Что такое биологический круговорот веществ

Все вещества на планете находятся в процессе кругово­рота. Солнечная энергия вызывает на Земле два круговоро­та веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризует­ся двумя важными моментами: он осуществляется на про­тяжении всего геологического развития Земли и представ­ляет собой современный планетарный процесс, принимаю­щий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и раз­рушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и хими­ческих элементов. Значительную роль в этих процессах иг­рали и продолжают играть термические свойства поверх­ности суши и воды: поглощение и отражение солнечных лу­чей, теплопроводность и теплоемкость. Неустойчивый гид­ротермический режим поверхности Земли вместе с плане­тарной системой циркуляции атмосферы обусловливал гео­логический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и совре­менных геосфер. Со становлением биосферы в большой кру­говорот включились продукты жизнедеятельности орга­низмов. Геологический круговорот поставляет живым ор­ганизмам элементы питания и во многом определяет усло­вия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и дру­гие - участвуют в большом круговороте, проходя от глу­бинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Зем­ли, подвергается разложению, выветриванию в области био­сферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глу­бину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис.).


Наиболее интенсивному и быстрому круговороту подвер­гаются легкоподвижные вещества - газы и природные во­ды, составляющие атмосферу и гидросферу планеты. Зна­чительно медленнее совершает круговорот материал литос­феры. В целом каждый круговорот любого химического элемента является частью общего большого круговорота ве­ществ на Земле, и все они тесно связаны между собой. Жи­вое вещество биосферы в этом круговороте выполняет ог­ромную работу по перераспределению химических элемен­тов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, гриба­ми, микроорганизмами и почвой. Суть биологического круго­ворота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических ве­ществ и их разрушения. Начальный этап возникновения ор­ганических веществ обусловлен фотосинтезом зеленых расте­ний, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, маг­ния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I по­рядка) поглощают соединения этих элементов уже в виде пи­щи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потреб­ляя пищу более сложного состава, включающую белки, жи­ры, аминокислоты и другие вещества. В процессе разруше­ния микроорганизмами (редуцентами) органических ве­ществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следую­щий виток биологического круговорота (рис. 33).


Возникновение и развитие ноосферы

Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.

Тема – 6. Природа – человек: системный подход. Цель лекции: Сформировать целостное представление о системных постулатах экологии.

Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».

Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей, целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупно­сти обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X - «среда») с живыми системами биологической части иерархии (Б - «биота») приводит к смешан­ному классу систем, называемых экологическими. А объединение систем из иерархий С

(«человек») и Т («техника») приводит к клас­су хозяйственных, или технико-экономических, систем.

Рис. . Иерархии материальных систем:

Ф, X - физико-химическая, Б - биологическая, С - социальная, Т - техническая

Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь - к абиотической среде, верхняя - к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.

Всем системам присущи некоторые общие свойства:

1. Каждая система имеет определенную структуру, определяе­мую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно на­звать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей опреде­ленную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

2. Согласно принципу необходимого разнообразия система не мо­жет состоять из идентичных элементов, лишенных индивидуально­сти. Нижний предел разнообразия - не менее двух элементов (про­тон и электрон, белок и нуклеиновая кислота, «он» и «она»), верх­ний - бесконечность. Разнообразие - важнейшая информацион­ная характеристика системы. Оно отличается от числа разновидно­стей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодейст­вие между элементами. По отдельным деталям машины перед сбор­кой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, опре­деляет эмерджентность системы.

4.Выделение системы делит ее мир на две части - саму систе­му и ее среду. В зависимости от наличия (отсутствия) обмена веще­ством, энергией и информацией со средой принципиально возмож­ны: изолированные системы (никакой обмен невозможен); замкну­тые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определя­ет обмен информацией. В живой природе существуют только от­крытые динамические системы, между внутренними элементами ко­торых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система - от вируса до биосферы - представляет собой открытую динамическую систему.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз­
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внеш­нее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддержи­вается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы - самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации и образования подсистем в структуре системы. В природе все формы поведения систем - от элементарной реакции до глобальной эволюции - существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации - раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).

Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):

1 - разнообразие, 2 - устойчивость, 3 - эмерджентность, 4 - сложность, 5 - неидентичность, 6 - распространенность

В порядке возрастания активности по отношению к внешним воз­действиям качества системы могут быть упорядочены в следующей последовательности: 1 - устойчивость, 2 - надежность, обусловлен­ная информированностью о среде (помехоустойчивость), 3 - управляемость, 4 - самоорганизация. В этом ряду каждое последующее ка­чество имеет смысл при наличии предыдущего.

Пар Сложность структуры системы опреде­ляется числом п ее элементов и числом т

связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определя­ется логарифмом числа связей:

C=lgm. (2.1)

Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.

Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых моле­кулярных состояний превышает последнее значение.

Доводилось мне читать литературу, где описывалась «модная тенденция» в науке XVI–XVII столетия - создание вечного двигателя. Эта мечта так и осталась неосуществимой, но идея, по-моему, срисована с природы. Круговорот живого и неживого происходит постоянно. Кто-то скажет, что через миллиарды лет Земля исчезнет, а я бы возразила, ведь из останков нашей галактики образуется новая. Наша Вселенная и есть вечный двигатель.

В чем суть биологического круговорота веществ

На Земле беспрерывно происходит два типа круговорота: биотический и абиотический.

Вещества сами по себе не являются живыми и одинаково принимают участие в обоих циклах, но как только оказываются внутри живого организма, то его можно считать участником биологического круговорота.

Элементы, участвующие в биологическом цикле:

  • минеральные вещества;
  • газы;
  • вода.

Спектр веществ очень широкий. Условно их можно поделить на жизненно необходимые для организмов (вода, кислород, азот, углекислота) и несущие живому ущерб.

Процесс циркуляция веществ

Независимо от вредности или полезности любое вещество когда-то приходит в организм и однажды его покидает.

В случае с водой циркуляция происходит постоянно. Например, организм человека за день выводит около 6 литров, но мы не теряем свой вес за счет постоянного пополнения водных запасов. Испарившись из тела, молекулы воды устремляются к облакам, выпадают в виде дождя, попадают в водопровод и снова оказываются в организме.

По аналогичному принципу через любой живой организм проходят минеральные вещества и газы.

Циркуляция воздуха происходит интенсивнее всего: за сутки человек вдыхает 13 тыс. литров воздуха содержащего 20% кислорода, который на выдохе преобразуется в углекислоту. Тем не менее, благодаря растениям излишков углекислого газа в природе не наблюдается, они используют его во время фотосинтеза.

Некоторые вещества накапливаются в организме и не выводятся оттуда до самой смерти, они обычно наносят ущерб живому организму. Примерами таких веществ могут быть канцерогены, что вдыхаются курильщиками.

Под биологическим круговоротом веществ понимают поступления веществ и химических элементов из почвы и атмосферы в живых организмов, образование в этих телах новых сложных соединений и их возвращения из организмов или продуктов их разложения в почве и атмосферы (рис. 22). Биологический круговорот веществ - сложный процесс взаимосвязи и взаимодействия живых организмов как между собой, так и с окружающей средой. Он состоит из циклов разной продолжительности, которые по-разному влияют на ландшафт. Различают сезонные, годовые, многолетние и вековые циклы биологического круговорота. Лучше выражены годовые циклы круговорота, которые состоят из потребления элементов питания отдельными организмами или их формациями, а также постепенного возвращения вновь органических веществ в окружающую среду.

Главным источником энергии биологического круговорота является солнечная энергия. Благодаря солнечному излучению в биосфере осуществляется один из самых грандиозных процессов - фотосинтез. Растения поглощают энергию солнечного света, с ее помощью усваивают в своих листьях углекислоту и воду, раскладывая их на простые химические элементы. При этом углерод и водород растения используют на построение своих органических тел, а кислород, главным образом, выделяется ими в атмосферу. При участии кислорода происходит один из важнейших жизненных процессов - дыхание. Не меньшее значение имеет и другой процесс, в котором участвует кислород, - тление и гниение растений, расписание мертвых животных. При этом сложные органические соединения превращаются в более простые (углекислый газ, воду, азот таш.) Так завершается биологический круговорот веществ. Элементы, которые высвободились в процессе круговорота веществ, служат исходным материалом для следующего цикла круговорота.

Рис. 22.

Общее количество органического вещества в экосистемах определяется, главным образом, природными особенностями территории. Максимум накопления биомассы наблюдается в лесных биоценозах (табл. 9). Во влажных тропических лесах эта величина достигает 5000 ц / га и более. Значительно меньше биомасса широколиственных и особенно хвойных лесов бореального пояса (1000-3300 Ц / га). Еще меньшую биомассу имеют травяные группировки. Так, луговые степи дают в среднем 250 ц / га, а сухие степи - всего 100 ц / га.

Обращает на себя внимание отсутствие прямой зависимости между биомассой (общим количеством живого органического вещества в наземной и подземной сферах растительных сообществ) и осадков, то есть количеством ежегодно отмирающей органического вещества на единицу площади. Так, в луговых степях ежегодный опад в два-три раза превышает количество опада широколиственных лесов, хотя биомасса первых в 16 раз меньше биомассу этих лесов.


Таблица 9. Показатели биологической продуктивности основных типов растительности (по Л.Е. Родиным, Н.И. Базилевич, 1965)

Типы растительности

Общее количество биомассы, ц / га

Годовой прирост, ц / га

Опад, ц / га

Лесная подстилка или травяные остатки прошлых лет, ц / га

Отношение подстилки в опада зеленой части

Арктические тундры

Кустарниковые тундры

Ельники северной тайги

Ельники средней тайги

Ельники южной тайги

Степи луговые

Степи сухие

Пустынные

Субтропические лиственные леса

Влажные тропические леса

Но не вся отмирающая органическое вещество подвергается преобразования, часть его накапливается на поверхности почвы в виде подстилки или травяной войлока. Больше накопления надземной органического вещества наблюдается в кустарниковых тундрах. Накопление здесь подстилки свидетельствует о низком уровне процессов разложения органического вещества, то есть об ослаблении высвобождения энергии. В степях, саваннах и влажных тропических лесах, наоборот, весь опад очень быстро минерализируется. Таким образом, по отношению массы подстилки количеству опада зеленой части можно судить об интенсивности разложения органического вещества.

Вместе с круговоротом органического вещества в процессе жизнедеятельности растительных организмов происходит круговорот химических элементов, избирательно захваченных растениями из атмосферы, гидросферы и литосферы. Накопление и динамика азота и зольных элементов в биологическом круговороте определяется производительностью растительных сообществ, процентным содержанием и химическим составом золы растений, которые составляют биоценоз.

Наибольшее количество азота и зольных элементов содержится в растительности влажных тропических лесов (более 10 000 кг / га), значительным е содержание химических элементов в широколиственных лесах умеренного пояса (5800 кг / га). В биомассе травянистой растительности по сравнению с древесной, содержание азота и зольных элементов снижается, но не пропорционально изменению количества биомассы, поскольку, накапливая меньшую биомассу, травянистая растительность имеет более высокую зольность, чем лесная растительность. Поэтому в степной зоне в почву ежегодно поступает в 5 раз больше химических элементов, чем в ельниках южной тайги, и в 2,5 раза больше, чем в дубравах.

Обобщая важнейшие черты биологического круговорота, необходимо отметить, что в географическом аспекте от тундры в тайгу, широколиственных лесов и степей происходит увеличение величины годового прироста растений, а также активизируется интенсивность биологического круговорота от азотного через азотно-кальциевый к азотно-кремниевого. В пустынях годовая продукция органического вещества резко снижается. В ее биологическом цикле вместе с азотом существенную роль играют галогены - хлор и натрий.

В поясе влажных субтропиков и тропиков годовой прирост, емкость биологического круговорота возрастает до максимальных величин. Биологический круговорот характеризуется высокой интенсивностью, преобладанием азотно-кремниевого типа химизма с участием алюминия, железа, марганца. Кремниевые типы химизма особенно распространены в экваториальном поясе. Они характерны для тропических лесов, саванн, редколесий, травянисто-древесных формаций тугайного типа; в умеренном поясе - свойственные внутриконтинентальных степным областям.

Итак, согласно ростом влияния солнечной энергии на поверхность Земли от северных широт до южных происходит увеличение биологической продуктивности, интенсивности и разнообразия типов химизма биологического круговорота элементов.

БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ Поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с посмертными остатками и повторное поступление в живые организмы после процессов деструкции и минерализации с помощью микроорганизмов

Словарь бизнес-терминов. Академик.ру . 2001 .

Смотреть что такое "БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ" в других словарях:

    БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ, или малый К.в. поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с… … Экологический словарь

    Круговорот веществ малый, возникший одновременно с появлением жизни на Земле круговорот химических элементов и веществ, осуществляемый жизнедеятельностью организмов. Основную роль в биологическом круговороте играют первичные продуценты (зеленые… … Экологический словарь

    В природе, относительно повторяющиеся взаимосвязанные физические, химические и биологические процессы превращения и перемещения вещества в природе. До создания В. И. Вернадским биогеохимии и учения о биосфере в науке бытовало представление о… … Биологический энциклопедический словарь

    Многократно повторяющееся участие веществ в природных, процессах, протекающих в океане. Наиболее значителен биологический: повторное использование морскими организмами биогенных хим. компонентов (С, N, P, SiO2, CaCO3, a также Fe, Mn и др.),… … Геологическая энциклопедия

    Повторяющийся циклический процесс превращения и перемещения отдельных химических элементов и их соединений. Происходил в течение всей истории развития Земли и продолжается в настоящее время. Всегда имеет место определённое отклонение в составе и… … Географическая энциклопедия

    Круговорот веществ биологический - (биотический), биотический круговорот явление непрерывного относительно циклического, но неравномерного во времени и пространстве и сопровождающегося более или менее значительными потерями, закономерного перераспределения веществ, энергии и… … Концепции современного естествознания. Словарь основных терминов

    Схематическое представление прохождения азота через биосферу. Ключевым элементом цикла являются разные виды бактерий (англ.) Круговорот азота био … Википедия

    Циклические процессы перемещения и трансформации химических элементов в пределах биосферы, происходящие между ее (био)хорологическими подразделениями: биогеоценозами, ландшафтами и т.п. Ср. Биологический круговорот веществ и Геологический… … Экологический словарь

    См. Биологический круговорот веществ. Экологический словарь, 2001 … Экологический словарь

    Общая площадь планеты Земля составляет 510 млн. км2. На долю суши приходится 149 млн. км2, Мировой океан занимает 361 млн. км2. И суша и океан заселены растениями и животными. Разнообразие и тех и других очень велико. Ныне установлено… … Биологическая энциклопедия

Жизнедеятельность экосистемы и круговорот веществ в ней возможны только при условии постоянного притока энергии. Основной источник энергии на Земле - солнечное излучение. Энергия Солнца переводится фотосинтезирующими организмами в энергию химических связей органических соединений. Передача энергии по пищевым цепям подчиняется второму закону термодинамики: преобразование одного вида энергии в другой идет с потерей части энергии. При этом ее перераспределение подчиняется строгой закономерности: энергия, получаемая экосистемой и усваиваемая продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго и т.д. порядков, а затем редуцентам с падением потока энергии на каждом трофическом уровне. В связи с этим круговорота энергии не бывает.

В отличие от энергии, которая используется в экосистеме только один раз, вещества используются многократно из-за того, что их потребление и превращение происходит по кругу. Этот круговорот осуществляется живыми организмами экосистемы (продуцентами, консументами, редуцентами) и называется биологическим круговоротом веществ.

Биологический круговорот веществ, или малый — поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с посмертными остатками и повторное поступление в живые организмы после процессов деструкции и минерализации с помощью микроорганизмов. Такое понимание биологического круговорота веществ (по Н.П. Ремезову, Л.Е. Родину и Н.И. Базилевич) соответствует биогеоценотическому уровню. Точнее говорить о биологическом круговороте химических элементов, а не веществ, поскольку на разных стадиях круговорота вещества могут химически видоизменяться. По данным В.А. Ковды (1973), ежегодная величина биологического круговорота зольных элементов в системе почва-растение значительно превышает величину годового геохимического стока этих элементов в реки и моря и измеряется колоссальной цифрой 109 т/г.

Экологические системы суши и мирового океана связывают и перераспределяют солнечную энергию, углерод атмосферы, влагу, кислород, водород, фосфор, азот, серу, кальций и другие элементы. Жизнедеятельностью растительных организмов (продуцентов) и их взаимодействиями с животными (консументами), микроорганизмами (редуцентами) и неживой природой обеспечивается механизм накопления и перераспределения солнечной энергии, поступающей на Землю.

Круговорот веществ никогда не бывает полностью замкнутым. Часть органических и неорганических веществ выносится за пределы экосистемы, и в то же время их запасы могут пополняться за счет притока извне. В отдельных случаях степень повторяющегося воспроизводства некоторых циклов круговорота веществ составляет 90-98 %. Неполная замкнутость циклов в масштабах геологического времени приводит к накоплению элементов в различных природных сферах Земли. Таким образом накапливаются полезные ископаемые - уголь, нефть, газ, известняки и т.п.

2. Принципиальные особенности современного естествознания научной картины мира

Естествознание - наука о явлениях и законах природы. Современное естествознание включает многие естественно-научные отрасли: физику, химию, биологию, а также многочисленные смежные отрасли, такие, как физическая химия, биофизика, биохимия и др. Естествознание затрагивает широкий спектр вопросов о многочисленных и многосторонних проявлениях свойств природы, которую можно рассматривать как единое целое.

Современная многообразная техника - плод естествознания, которое и по сей день является основной базой для развития многочисленных перспективных направлений - от наноэлектроники до сложнейшей космической техники, и это очевидно для многих.

Философы всех времен опирались на новейшие достижения науки и, в первую очередь, естествознания. Достижения последнего столетия в физике, химии, биологии и в других науках позволили по-новому взглянуть на сложившиеся веками философские представления. Многие философские идеи рождались в недрах естествознания, а естествознание в свою очередь в начале развития носило натурфилософский характер. Про такую философию можно сказать словами немецкого философа Артура Шопенгауэра (1788-1860): «Моя философия не дала мне совершенно никаких доходов, но она избавила меня от очень многих трат».

Человек, обладающий хотя бы общими и в то же время концептуальными естественно-научными знаниями, т.е. знаниями о природе, будет производить свои действия непременно так, чтобы польза, как результат его действий, всегда сочеталась с бережным отношением к природе и с ее сохранением не только для нынешнего, но и для грядущих поколений.

Познание естественно-научной истины делает человека свободным, свободным в широком философском смысле этого слова, свободным от некомпетентных решений и действий, и наконец, свободным в выборе пути своей благородной и созидательной деятельности.

Нет смысла перечислять достижения естествознания, каждый из нас знает рожденные им технологии и пользуется ими. Передовые технологии базируются в основном на естественно-научных открытиях последних десятилетий XX в., однако, несмотря на ощутимые достижения, возникают проблемы, вызванные главным образом осознанием угрозы экологическому равновесию нашей планеты. Самые разные сторонники рыночной экономики согласятся, что свободный рынок не может защитить слонов в Африке от охотников или исторические памятники Месопотамии - от кислотных дождей и туристов. Только правительства способны устанавливать законы, стимулирующие обеспечение рынка всем тем, что нужно человеку, без разрушения среды его обитания.

Вместе с тем правительства не в силах проводить подобную политику без помощи ученых, и прежде всего ученых, владеющих современным естествознанием. Нужна связь между естествознанием и управляющими структурами в вопросах, касающихся окружающей среды, материального обеспечения и др. Без науки трудно сохранить чистоту планеты: уровень загрязнений нужно измерять, прогнозировать их последствия - только так мы можем узнать о бедах, которые необходимо предотвратить. Лишь с помощью самых современных естественно-научных и в первую очередь физических методов можно следить за толщиной и однородностью озонового слоя, защищающего человека от ультрафиолетового облучения. Только научные исследования помогут понять причины и следствия кислотных осадков и смога, сказывающихся на жизни каждого человека, дать знания, необходимые для полета человека на Луну, исследования глубин океана, найти способы избавления человека от многих тяжелых болезней.

В результате анализа популярных в 70-е годы математических моделей ученые пришли к выводу, что дальнейшее развитие экономики вскоре станет невозможным. И хотя они не привнесли новых знаний, они все-таки сыграли важную роль. Они продемонстрировали возможные последствия наметившихся сегодня тенденций развития. В свое время подобные модели действительно убедили миллионы людей, что защита природы необходима, а это немалый вклад в прогресс. Несмотря на различия в рекомендациях, все модели содержат один главный вывод: природу нельзя дальше загрязнять так, как сегодня

С естественно-научными знаниями можно связать многие проблемы на Земле. Однако проблемы эти порождаются незрелостью самой науки. Дайте ей продолжить свой курс - и человечество преодолеет сегодняшние трудности - таково мнение большинства ученых. Для других, в большей степени тех, кто лишь причисляет себя к когорте ученых, наука потеряла свою значимость.

Естествознание в значительной мере отражает потребности практиков и в то же время финансируется в зависимости от постоянно меняющихся симпатий государства и общественности.

Наука и техника - не только главный инструмент, позволяющий людям приспособиться к постоянно изменяющимся природным условиям, но и главная сила, прямо или косвенно вызывающая такие изменения.

Наряду с явными положительными чертами, присущими естествознанию, следует вести речь и о недостатках, обусловленных и природой самого знания, и непониманием на данном этапе каких-то очень важных свойств материального мира из-за ограниченности познания человека. Скажем, чистые математики сделали открытие, противоречащее представлениям мыслителей прошлого: случайные, хаотические процессы можно описать точными математическими моделями. Причем оказалось, что даже простая модель, оснащенная эффективной обратной связью, настолько чувствительна к малейшим изменениям начальных условий, что ее будущее становится непредсказуемым. Стоит ли тогда спорить о том, детерминистична ли Вселенная, если строго детерминистская модель дает результаты, не отличающиеся от вероятностных?

Цель естествознания - описать, систематизировать и объяснить совокупность природных явлений и процессов. Слово «объяснить» в методологии науки само требует объяснения. В большинстве случаев оно означает понимать. Что обычно подразумевает человек, говоря «Я понимаю»? Как правило, это означает: «Я знаю, откуда это взялось» и «Я знаю, к чему это приведет». Так образуется причинно-следственная связь: причина - явление - следствие. Расширение такой связи и образование многомерной структуры, охватывающей множество явлений, служит основой научной теории, характеризующейся четкой логической структурой и состоящей из набора принципов или аксиом и теорем со всеми возможными выводами. По такой схеме строится любая математическая дисциплина, например, Евклидова геометрия или теория множеств, которые могут служить характерными примерами научных теорий. Построение теории, конечно, предполагает создание особого научного языка, специальной терминологии, системы научных понятий, имеющих однозначный смысл и связанных между собой строгими правилами логики.

После того как теория «проверена опытом, наступает следующая стадия познания действительности, в которой устанавливаются границы истинности наших знаний или границы применимости теорий и отдельных научных утверждений. Данная стадия обусловливается объективными и субъективными факторами. Один из существенных объективных факторов - динамизм окружающего нас мира. Вспомним мудрые слова древнегреческого философа Гераклита (конец VI - начало V вв. до н.э.); «Все течет, все изменяется; в одну и ту же реку нельзя войти дважды» Подводя итог, сформулируем кратко три основных принципа научного познания действительности.

1. Причинность. Первое и достаточно емкое определение причинности содержится в высказывании Демокрита: «Ни одна вещь не возникает беспричинно, но все возникает на каком-нибудь основании и в силу необходимости».

2. Критерий истины. Естественно-научная истина проверяется (доказывается) только практикой: наблюдениями, опытами, экспериментами, производственной деятельностью: Если научная теория подтверждена практикой, то она истинна. Естественно-научные теории проверяются Экспериментом, связанным с наблюдениями, измерениями и математической обработкой получаемых результатов. Подчеркивая важность измерений, выдающийся ученый Д.И. Менделеев (1834 - 1907) писал: «Наука, началась тогда, когда люди научились мерить; точная наука немыслима без меры».

3. Относительность научного знания. Научное знание (понятия, идеи, концепции, модели, теории, выводы из них и т.п.) всегда относительно и ограничено.

Часто встречающееся утверждение: главная цель естествознания - установление законов природы, открытие скрытых истин - явно или неявно предполагает, что истина где-то уже есть и существует в готовом виде, ее надо только найти, отыскать как некое сокровище. Великий философ древности Демокрит говорил: «Истина скрыта в глубине (лежит на дне морском)». Другой объективный фактор связан с несовершенством техники эксперимента, служащей материальной базой любого опыта.

Естествознание тем или иным способом систематизирует наши наблюдения над природой. При этом не следует считать, например, теорию кривых второго порядка приближенной на том основании, что в природе в точности кривых второго порядка нет. Нельзя говорить, что неевклидова геометрия уточняет Евклидову - каждая занимает в системе моделей свое место, являясь точной в соответствии с внутренними критериями точности, и находит применение там, где необходимо. Точно так же неверно утверждать, что теория относительности уточняет классическую механику - это разные модели, имеющие, вообще говоря, и разные сферы приложения.

В современном представлении истина - правильное, адекватное отражение познающим субъектом предметов и явлений действительности, воспроизводящее их так, как они существуют вне и независимо от сознания. Как результат деятельности человеческого мышления истина объективна по содержанию, но субъективна по форме. Можно говорить об относительной истине, отражающей предмет не полностью, а в объективно обусловленных пределах. Абсолютная истина полностью исчерпывает предмет познания. Всякая относительная истина содержит элемент абсолютного знания. Абсолютная истина есть сумма относительных истин. Истина всегда конкретна.

Каким бы ни представлялось содержание истины, занимающей умы великих ученых с древних времен, и как бы ни решался сложный вопрос о предмете науки в целом и естествознании в частности, - одно очевидно: естествознание есть чрезвычайно эффективный, мощный инструмент, не только позволяющий познать окружающий мир, но и приносящий громадную пользу.

С течением времени и особенно в конце последнего столетия наблюдается изменение функции науки и в первую очередь - естествознания. Если раньше основная функция науки заключалась в описании, систематизации и объяснении исследуемых объектов, то сейчас наука становится неотъемлемой частью производственной деятельности человека, в результате чего современное производство - будь то выпуск сложнейшей космической техники, современных супер- и персональных компьютеров или высококачественной аудио- и видеоаппаратуры - приобретает наукоемкий характер. Происходит сращивание научной и производственно-технической деятельности, в итоге появляются крупные научно-производственные объединения - межотраслевые научно-технические комплексы «наука - техника - производство», в которых науке принадлежит ведущая роль. Именно в таких комплексах были созданы первые космические системы, первые атомные электростанции и многое другое, что принято считать наивысшими достижениями науки и техники.

В последнее время специалисты гуманитарных наук считают, что наука - производительная сила. При этом имеется в виду прежде всего естествознание. Хотя наука и не производит непосредственно материальную продукцию, но очевидно, что в основе производства любой продукции лежат научные разработки. Поэтому, когда говорят о науке как о производительной силе, то принимают во внимание не конечную продукцию тоге или иного производства, а ту научную информацию - своего рода продукцию, на базе которой и организуется, и реализуется производство материальных ценностей.

Учитывая такой важный показатель, как количество научной информации, можно сделать не только качественную, но и количественную оценку временного изменения данного показателя и, таким образом, определить закономерность развития науки.

Количественный анализ показывает, что темп развития науки как в целом, так и для таких отраслей естествознания, как физика, биология и т.п., а также для математики, характеризуется приростом на 5-7% в год на протяжении последних 300 лет. При анализе учитывались конкретные показатели: число научных статей, научных сотрудников и т.д. Такой темп развития науки можно охарактеризовать и по-другому. За каждые 15 лет (половина средней разницы в возрасте между родителями и детьми) объем научной продукции возрастает в е раз (е = 2,72 - основание натуральных логарифмов). Это утверждение составляет сущность закономерности экспоненциального развития науки.

Из данной закономерности вытекают следующие выводы. За каждые 60 лет научная продукция увеличивается примерно в 50 раз. За последние 30 лет такой продукции создано приблизительно в 6,4 раза больше, чем за всю историю человечества. В данной связи к многочисленным характеристикам XX в. вполне оправданно можно добавить еще одну - «век науки».

Совершенно очевидно, что в пределах рассмотренных показателей (их, конечно, нельзя считать исчерпывающими для характеристики сложной проблемы развития науки) экспоненциальное развитие науки не может продолжаться бесконечно долго, иначе за сравнительно небольшой интервал времени, в ближайшем будущем все население земного шара превратилось бы в научных сотрудников. Как отмечалось в предыдущем параграфе, даже в большом числе научных публикаций содержится сравнительно небольшое количество по-настоящему ценной научной информации. И не каждый исследователь вносит существенный вклад в подлинную науку. Дальнейшее развитие науки будет продолжаться и в будущем, но, не за счет экстенсивного роста числа научных сотрудников и числа производимых ими научных публикаций, а за счет привлечения прогрессивных методов и технологий исследования, а также повышения качества научной работы.

Сегодня, как никогда, важна развернутая работа не только и не столько по критике и переосмыслению прошлого, сколько по исследованию путей в будущее, поиску новых идей и идеалов. Помимо вопросов экономики, это, наверное, самый значительный социальный заказ отечественной науке и культуре. Прошлые идеи себя исчерпывают или исчерпали, и если мы не заполним образовавшуюся пустоту, то она будет занята еще более старыми представлениями и фундаментализмом, утвержденными уже силой и авторитетом власти. Именно в этом состоит сегодня вызов разуму, уход от которого мы наблюдаем.

3. Во всех инерциальных системах отчета движение происходит по одинаковым закономерностям – это формулировка…

а) закона всемирного тяготения; б) принципы относительности Галилея; в) законы классической механики Ньютона

При́нцип относи́тельности - фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Данное определение относится к пункту «б» – принципы относительности Галилея.

4. Принципы относительности Галилея

Галилея принцип относительности, принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы. Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Это положение было впервые установлено Г. Галилеем в 1636. Одинаковость законов механики для инерциальных систем Галилей иллюстрировал на примере явлений, происходящих под палубой корабля, покоящегося или движущегося равномерно и прямолинейно (относительно Земли, которую можно с достаточной степенью точности считать инерциальной системой отсчёта): «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно… Бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, а вы на корме, чем когда ваше взаимное положение будет обратным; капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей» 1 .

Движение материальной точки относительно: её положение, скорость, вид траектории зависят от того, по отношению к какой системе отсчёта (телу отсчёта) это движение рассматривается. В то же время законы классической механики, т. е. соотношения, которые связывают величины, описывающие движение материальных точек и взаимодействие между ними, одинаковы во всех инерциальных системах отсчёта. Относительность механического движения и одинаковость (безотносительность) законов механики в разных инерциальных системах отсчёта и составляют содержание Галилеевского принципа относительности.

Математически Галилеевский принцип относительности выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой - преобразований Галилея.

Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S’, движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S’ будут иметь вид:

x’ = x — ut, у’ = у, z’ = z, t’ = t (1)

(штрихованные величины относятся к системе S’, нештрихованные - к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта.

Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах:

v’ = v — u, (2)

a’ = a.

В классической механике движение материальной точки определяется вторым законом Ньютона:

F = ma, (3)

Где m - масса точки, a F - равнодействующая всех приложенных к ней сил. При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой. Поэтому при преобразованиях Галилея уравнение (3) не меняется. Это и есть математическое выражение Галилеевского принципа относительности.

Галилеевский принцип относительности справедлив лишь в классической механике, в которой рассматриваются движения со скоростями, много меньшими скорости света. При скоростях, близких к скорости света, движение тел подчиняется законам релятивистской механики Эйнштейна, которые инвариантны по отношению к другим преобразованиям координат и времени - Лоренца преобразованиям
(при малых скоростях они переходят в преобразования Галилея).

5. Специальная теория относительности Эйнштейна

Специальная теория относительности базируется на двух постулатах. Первый постулат (обобщенный принцип относительности Эйнштейна) гласит: никакими физическими опытами (механическими, электромагнитными и т.д.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения (иными словами, законы природы одинаковы во всех инерциальных системах координат, т.е. системах, движущихся прямолинейно и равномерно друг относительно друга). Этот постулат вытекает из результатов знаменитого опыта Майкельсона-Морлея, измерявших скорость света в направлении движения Земли и в перпендикулярном направлении. Скорость света оказалась одинаковой во всех направлениях, независимо от факта движения источника (кстати, эти измерения отвергли идею существования мирового неподвижного эфира, колебаниями которого объясняли природу света).

Второй постулат говорит о том, что скорость света в вакууме одинакова во всех инерциальных системах координат. Этот постулат понимается (в том числе самим Эйнштейном) в смысле постоянства скорости света. Принято считать, что этот постулат также есть следствие опыта Майкельсона.

Постулаты были использованы Эйнштейном для анализа уравнений электродинамики Максвелла и следующих преобразований Лоренца, позволяющих выражать координаты и время для движущейся системы (отмечены штрихом сверху) через координаты и время для неподвижной системы (эти преобразования оставляют уравнения Максвелла неизменными):


x’ = (x – Vt)/^0,5 (м); y’ = y (м); z’ = z (м); (1)

t’ = (t – xV/c^2)/^0,5 (сек). (2)
Из этих преобразований непосредственно вытекает теорема сложения скоростей Эйнштейна:

Vc = (V1 + V2)/(1 + V1*V2/c^2) (м/сек). (3)

Обычный закон сложения (Vc = V1 + V2 ) действует только при малых скоростях.
На основе выполненного анализа Эйнштейн пришел к выводу, что факт движения системы (со скоростью V ) влияет на ее размеры, скорость течения времени и массу в соответствии с выражениями:

l = lo/^0,5 (м); (4)
delta t = delta to/^0,5 (сек); (5)
M = Mo/^0,5 (кг). (6)
Нулем отмечены величины, относящиеся к неподвижной (покоящейся) системе. Формулы (4) – (6) свидетельствуют о том, что длина движущейся системы сокращается, течение времени на ней (ход часов) замедляется, а масса возрастает. На основе формулы (5) возникла идея так называемого эффекта близнецов. Космонавт, который пролетел на корабле год (по часам корабля) со скоростью 0,9998с , возвратившись на Землю, встретит своего брата-близнеца, постаревшего на 50 лет. Соотношение (6), характеризующее эффект возрастания массы, привело Эйнштейна к формулировке его знаменитого закона (6):

E = Mс^2 (дж).

6. Общая теория относительности Эйнштейна

О́бщая тео́рия относи́тельности (ОТО) - геометрическая теория тяготения , опубликованная Альбертом Эйнштейном в - годах . В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности , постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей , находящихся в пространстве-времени , а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности (ОТО) - современная теория тяготения, связывающая его с кривизной четырехмерного пространства-времени.

Таким образом, в ОТО, как и в других метрических теориях , гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

ОТО в настоящее время - самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии
перигелия
Меркурия . Затем, в , Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения , что подтвердило предсказания общей теории относительности . С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории , включая гравитационное замедление времени , гравитационное красное смещение , задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение . Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности - существования чёрных дыр .

Эйнштейн сформулировал принцип эквивалентности, утверждающий, что физические процессы в гравитационном поле неотличимы от аналогичных явлений при соответствующем ускоренном движении. Принцип эквивалентности стал основой новой теории, названной общей теорией относительности (ОТО). Возможность реализации этой идеи Эйнштейн увидел на пути обобщения принципа относительности движения, т.е. распространения его не только на скорость, но и на ускорение движущихся систем. Если не приписывать абсолютный характер ускорению, то выделенность класса инерциальных систем потеряет свой смысл и можно формулировать физические законы таким образом, чтобы они относились к любой системе координат. В этом и заключается общий принцип относительности.

С точки зрения ОТО пространство нашего мира не обладает постоянной нулевой кривизной. Кривизна его меняется от точки к точке и определяется полем тяготения, И время в разных точках течет по-разному. Поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального (евклидова) пространства. Поле тяготения в каждой точке определяется значением кривизны пространства в этой точке. При этом искривление пространства-времени определяется не только полной массой вещества, из которого слагается тело, но и всеми видами энергии, присутствующими в нем, в том числе энергии всех физических полей. Так, в ОТО обобщается принцип тождества массы и энергии СТО: Е= mc 2 . Таким образом, важнейшее отличие ОТО от других физических теорий состоит в том, что она описывает тяготение как воздействие материи на свойства пространства-времени, эти свойства пространства-времени, со своей стороны, влияют на движение тел, на физические процессы в них.

В ОТО движение материальной точки в поле тяготения рассматривается как свободное «инерциальное» движение, но происходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства. Для определения кривизны пространства необходимо знать выражение для компонент фундаментального тензора (аналога потенциала в ньютоновской теории тяготения). Задача заключается в том, чтобы, зная распределения тяготеющих масс в пространстве, определить функции координат и времени (компонент фундаментального тензора); тогда можно записать уравнение геодезической линии и решить проблему движения материальной точки, проблему распространения светового луча и т.д.

Эйнштейн нашел общее уравнение гравитационного поля (которое в классическом приближении переходило в закон тяготения Ньютона) и таким образом решил проблему тяготения в общем виде. Уравнения гравитационного поля в общей теории относительности представляют собой систему из 10 уравнений. В отличие от теории тяготения Ньютона, где есть один потенциал гравитационного поля, который зависит от единственной величины - плотности массы, в теории Эйнштейна гравитационное поле описывается 10 потенциалами и может создаваться не только плотностью массы, но также потоком массы и потоком импульса.

Еще одно кардинальное отличие ОТО от предшествующих ей физических теорий состоит в отказе от ряда старых понятий и формулировке новых. Так, ОТО отказывается от понятий «сила», «потенциальная энергия», «инерциальная система»» «евклидов характер пространства-времени» и др.; В ОТО используют нежесткие (деформирующиеся) телаотсчета, поскольку в гравитационных полях не существует твердых тел и ход часов зависит от состояния этих полей. Такая система отсчета (ее называют «моллюском отсчета») может двигаться произвольным образом, и ее форма может изменяться, у используемых часов может быть сколь угодно нерегулярный ход. ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, допускает возможность гравитационных волн. Гравитационные волны создаются переменным гравитационным полем, неравномерным движением масс и распространяются в пространстве со скоростью света. Гравитационные волны в земных условиях очень слабы. Есть возможность реальной фиксации гравитационного излучения, возникающего в грандиозных катастрофических процессах во Вселенной - вспышках сверхновых звезд, столкновении пульсаров и др. Но их до сих пор экспериментально обнаружить не удалось.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный с тем, что её не удаётся переформулировать как классический предел квантовой теории из-за появления неустранимых математических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этой проблемы был предложен ряд альтернативных теорий . Современные экспериментальные данные указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.
ФОРМИРОВАНИЕ СОВРЕМЕННОЙ ФИЗИЧЕСКОЙ КАРТИНЫ МИРА ПРИНЦИПЫ И ПОНЯТИЯ ЭЙНШТЕЙНОВСКОЙ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (ТЕОРИИ ГРАВИТАЦИИ) Концепции уровней биологических структур и организации живых систем ЗАКОНЫ СОХРАНЕНИЯ

2014-11-17
Похожие публикации