За счет чего совершается работа силы тяжести. Работа силы тяжести. Потенциальная энергия тела, поднятого над землей. Угол между вектором силы и перемещением

На этом уроке мы рассмотрим различное движение тела под действием силы тяжести и научимся находить работу этой силы. Также введём понятие потенциальной энергии тела, узнаем, как связана эта энергия с работой силы тяжести, выведем формулу, по которой находится эта энергия. С помощью данной формулы решим задачу, взятую из сборника для подготовки к единому государственному экзамену.

На прошлых уроках мы изучили разновидности сил в природе. Для каждой силы необходимо правильно вычислять работу. Данный урок посвящён изучению работы силы тяжести.

При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна , где m - масса тела, g - ускорение свободного падения.

Пусть тело массой m свободно падает с высоты над каким-либо уровнем, с которого ведётся отсчёт, до высоты над тем же уровнем (см. Рис. 1).

Рис. 1. Свободное падение тела с высоты до высоты

При этом модуль перемещения тела равен разности этих высот:

Так как направление перемещения и силы тяжести совпадают, то работа силы тяжести равна:

Значение высот в этой формуле можно отсчитывать от любого уровня (уровень моря, уровень дна ямы, которая вырыта в земле, поверхность стола, поверхность пола и т. д.). В любом случае высоту данной поверхности выбирают равной нулю, поэтому уровень данной высоты называют нулевым уровнем .

Если тело падает с высоты h до нулевого уровня, то работа силы тяжести будет равна:

Если тело, брошенное вверх с нулевого уровня, достигает высоты hнад этим уровнем, то работа силы тяжести будет равна:

Пусть тело массой m движется по наклонной плоскости высотой h и при этом совершает перемещение , модуль которого равен длине наклонной плоскости (см. Рис. 2).

Рис. 2. Движение тела по наклонной плоскости

Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна:

где - угол между векторами силы тяжести и перемещения.

На рисунке 2 видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h - катет. Согласно свойству прямоугольного треугольника:

Следовательно

Мы получили выражение для работы силы тяжести такое же, как в случае вертикального движения тела. Можно сделать вывод: если траектория тела не является прямолинейной и тело движется под действием силы тяжести, то работа силы тяжести определяется только изменением высоты тела над некоторым нулевым уровнем и не зависит от траектории движения тела.

Рис. 3. Движение тела по криволинейной траектории

Докажем предыдущее утверждение. Пусть тело движется по некоторой криволинейной траектории (см. Рис. 3). Эту траекторию мысленно разбиваем на ряд малых участков, каждый из которых можно считать маленькой наклонной плоскостью. Движение тела по всей траектории можно представить как движение по множеству наклонных плоскостей. Работа силы тяжести на каждом из участков будет равна произведению силы тяжести на высоту данного участка. Если изменения высот на отдельных участках равны , то работы силы тяжести на них равны:

Полная работа на всей траектории равна сумме работ на отдельных участках:

- полная высота, которую преодолело тело,

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. Что и требовалось доказать.

При движении вниз работа положительна, при движении вверх - отрицательна.

Пусть некоторое тело совершило движение по замкнутой траектории, то есть оно сначала спустилось вниз, а потом по какой-то другой траектории вернулось в исходную точку. Так как тело оказалось в той же самой точке, в которой оно было изначально, то разность высот между начальным и конечным положением тела равна нулю, поэтому и работа силы тяжести будет равна нулю. Следовательно, работа силы тяжести при движении тела по замкнутой траектории равна нулю.

В формуле для работы силы тяжести вынесем (-1) за скобку:

Из прошлых уроков известно, что работа сил, приложенных к телу, равна разности между конечным и начальным значением кинетической энергии тела. В полученной формуле также видна связь между работой силы тяжести и разностью между значениями некоторой физической величины, равной . Такая величина называется потенциальной энергией тела , которое находится на высоте h над некоторым нулевым уровнем.

Изменение потенциальной энергии отрицательно по величине, если совершается положительная работа силы тяжести (видно из формулы ). Если совершается отрицательная работа, то изменение потенциальной энергии будет положительным.

Если тело падает с высоты h на нулевой уровень, то работа силы тяжести будет равна значению потенциальной энергии тела, поднятого на высоту h .

Потенциальная энергия тела , поднятого на некоторую высоту над нулевым уровнем, равна работе, которую совершит сила тяжести при падении данного тела с данной высоты на нулевой уровень.

В отличие от кинетической энергии, которая зависит от скорости тела, потенциальная энергия может быть не равной нулю даже у покоящихся тел.

Рис. 4. Тело, находящееся ниже нулевого уровня

Если тело находится ниже нулевого уровня, то оно обладает отрицательной потенциальной энергией (см. Рис. 4). То есть знак и модуль потенциальной энергии зависят от выбора нулевого уровня. Работа, которая совершается при перемещении тела, от выбора нулевого уровня не зависит.

Термин «потенциальная энергия» применяется только по отношению к системе тел. Во всех вышеприведенных рассуждениях этой системой была «Земля - тело, поднятое над Землёй».

Однородный прямоугольный параллелепипед массой m с рёбрами располагают на горизонтальной плоскости на каждой из трёх граней поочерёдно. Какова потенциальная энергия параллелепипеда в каждом из этих положений?

Дано: m - масса параллелепипеда; - длина рёбер параллелепипеда.

Найти: ; ;

Решение

Если нужно определить потенциальную энергию тела конечных размеров, то можно считать, что вся масса такого тела сосредоточена в одной точке, которая называется центром масс данного тела.

В случае симметричных геометрических тел центр масс совпадает с геометрическим центром, то есть (для данной задачи) с точкой пересечения диагоналей параллелепипеда. Таким образом, необходимо посчитать высоту, на которой расположена данная точка при различных расположениях параллелепипеда (см. Рис. 5).

Рис. 5. Иллюстрация к задаче

Для того чтобы найти потенциальную энергию, необходимо полученные значения высоты умножить на массу параллелепипеда и ускорение свободного падения.

Ответ: ; ;

На данном уроке мы научились вычислять работу силы тяжести. При этом увидели, что, независимо от траектории движении тела, работа силы тяжести определяется разностью между высотами начального и конечного положения тела над некоторым нулевым уровнем. Также мы ввели понятие потенциальной энергии и показали, что работа силы тяжести равна изменению потенциальной энергии тела, взятой с противоположным знаком. Какую работу надо совершить, чтобы переложить пакет с мукой массой 2 кг с полки, находящейся на высоте 0,5 м относительно пола, на стол, находящийся на высоте 0,75 м относительно пола? Чему равны относительно пола потенциальная энергия пакета с мукой, лежавшего на полке, и его потенциальная энергия тогда, когда он находится на столе?

A тяж = mg(h н – h к) (14.19)

где h н и h к - начальная и конечная высоты (рис.14.7) материальной точки массой m, g - модуль ускорения свободного падения.

Работа силы тяжести A тяж определяется начальным и конечным положениями материальной точки и не зависит от траектории между ними.

Она может быть положительной, отрицательной и равной нулю:

а) A тяж > 0 - при спуске материальной точки,

б) A тяж < 0 - при подъеме материальной точки,

в) A тяж = 0 - при условии, что высота не изменяется, либо при замкнутой траектории материальной точки.

Работа силы трения при постоянных скорости м.т. (v = const ) и силы трения (F тр = const ) на промежутке времени t:

A тр = (F тр,v )t, (14.20)

Работа силы трения может быть положительной, отрицательной и равной нулю. Например:

а
) работа силы трения, действующей на нижний брусок со стороны верхнего бруска (рис.14.8), A тр.2,1 > 0, т.к. угол между силой, действующей на нижний брусок со стороны верхнего бруска F тр.2,1 и скоростью v 2 нижнего бруска (относительно поверхности Земли) равен нулю;

б) A тр.1,2 < 0 - угол между силой трения F тр.1,2 и скоростью v 1 верхнего бруска равен 180 (см. рис.14.8);

в) А тр = 0 - например, брусок находится на вращающемся горизонтальном диске (относительно диска брусок неподвижен).

Работа силы трения зависит от траектории между начальным и конечным положениями материальной точки.

§15. Механическая энергия

Кинетическая энергия материальной точки K - СФВ, равная половине произведения массы м.т. на квадрат модуля ее скорости:

(15.1)

Кинетическая энергия, обусловленная движением тела, зависит от системы отсчета и является неотрицательной величиной:

Единица кинетической энергии -джоуль: [К] = Дж.

Теорема о кинетической энергии - приращение кинетической энергии м.т. равно работе A р равнодействующей силы:

K = A р. (15.3)

Работа равнодействующей силы может быть найдена как сумма работ А i всех силF i (i = 1,2,…n), приложенных к м.т.:

(15.4)

Модуль скорости материальной точки: при A р > 0 - увеличивается; при A р < 0 - уменьшается; при A р = 0 - не изменяется.

Кинетическая энергия системы материальных точек K с равна сумме кинетических энергий K i всех n м.т., принадлежащих данной системе:

(15.5)

где m i и v i - масса и модуль скорости i-й м.т. данной системы.

Приращение кинетической энергии системы м.т. K с равно сумме работ А рi всех n равнодействующих сил, приложенных к i-м материальным точкам системы:

(15.6)

Поле сил - область пространства, в каждой точке которой на тело действуют силы.

Стационарное поле сил - поле, силы которого не изменяются с течением времени.

Однородное поле сил - поле, силы которого во всех его точках одинаковы.

Центральное поле сил - поле, направления действия всех сил которого проходят через одну точку, называемую центром поля, а модуль сил зависит только от расстояния до этого центра.

Неконсервативные силы (нкс.сл) - силы, работа которых зависит от траектории между начальным и конечным положениями тела.

Пример неконсервативных сил - силы трения. Работа сил трения по замкнутой траектории в общем случае не равна нулю.

Консервативные силы (кс.сл) - силы, работа которых определяется начальным и конечным положениями м.т. и не зависит от траектории между ними. При замкнутой траектории работа консервативных сил равна нулю. Поле консервативных сил называется потенциальным.

Пример консервативных сил - силы тяжести и упругости.

Потенциальная энергия П - СФВ, являющаяся функцией взаимного расположения частей системы (тела).

Единица потенциальной энергии -джоуль: [П] = Дж.

Теорема о потенциальной энергии

Убыль потенциальной энергии системы материальных точек равна работе консервативных сил:

–П с = П н – П к = A кс.сл (15.7)

Потенциальная энергия определяется с точностью до постоянной величины и может быть положительной, отрицательной или равной нулю.

Потенциальная энергия материальной точки П в какой-либо точке силового поля - СФВ, равная работе консервативных сил при перемещении м.т. из данной точки поля в точку, потенциальная энергия в которой принята равной нулю:

П = A кс.сл. (15.8)

Потенциальная энергия упругодеформированной пружины

(15.9)

где х - смещение незакрепленного конца пружины; к - жесткость пружины, С - произвольная постоянная (выбирается из условия удобства решения задачи).

Графики П(х) при различных постоянных: а) С > 0, б) С = 0, в) С < 0  параболы (рис.15.1).

При условии П (0) = 0 постоянная С = 0 и

(15.10)

Полезно ознакомиться в отдельности с работой каждой из механических сил, с которыми мы ознакомились в пятой главе: силы тяжести, силы упругости и силы трения. Начнем с силы тяжести. Сила тяжести равна и направлена по вертикали вниз. Вблизи поверхности Земли ее можно считать постоянной. При движении тела по вертикали вниз сила тяжести совпадает по направлению с перемещением. При переходе с высоты над каким-то уровнем, от которого мы начинаем отсчет высоты, до высоты над тем же уровнем (рис. 192), тело совершает перемещение, по абсолютной величине равное Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:

Высоты не обязательно отсчитывать от поверхности Земли. Для начала отсчета высот можно выбрать любой уровень. Это может быть пол комнаты, стол или стул, это может быть и дно ямы, вырытой в земле, и т. д. Ведь в формулу для работы входит разность высот, а она не зависит от того, откуда начинать их отсчет. Мы могли бы, например, условиться начинать отсчет высоты с уровня В (см. рис. 192). Тогда высота этого уровня была бы равна нулю, а работа выражалась бы равенством

где - высота точки над уровнем В.

Если тело движется вертикально вверх, то сила тяжести направлена против движения тела и ее работа отрицательна. При подъеме тела на высоту над тем уровнем, с которого оно брошено, сила тяжести совершает работу, равную

Если после подъема вверх тело возвращается в исходную течку, то работа на таком пути, начинающемся и кончающемся в одной и той же точке (на замкнутом пути), на пути «туда и обратно», равна нулю. Это одна из особенностей силы тяжести: работа силы тяжести на замкнутом пути равна нулю.

Теперь выясним, какую работу совершает сила тяжести в случае, когда тело движется не по вертикали.

В качестве примера рассмотрим движение тела по наклонной плоскости (рис. 193). Допустим, что тело массой по наклонной плоскости высотой совершает перемещение по абсолютной величине равное длине наклонной плоскости. Работу силы тяжести в этом случае надо вычислять по формуле . Но из рисунка видно, что

Мы получили для работы то же самое значение.

Выходит, что работа силы тяжести не зависит от того, движется ли тело по вертикали или

проходит более длинный путь по наклонной плоскости. При одной и той же «потере высоты» работа силы тяжести одинакова (рис. 194).

Это справедливо не только при движении по наклонной плоскости, но и по любому другому пути. В самом деле, допустим, что тело движется по какому-то произвольному пути, например по такому, какой изображен на рисунке 195. Весь этот путь мы можем мысленно разбить на ряд малых участков: Каждый из них может считаться маленькой наклонной плоскостью, а все движение тела на пути можно представить как движение по множеству наклонных плоскостей, переходящих одна в другую. Работа силы тяжести на каждой такой наклонной плоскости равна произведению на изменение высоты тела на ней. Если изменения высот на отдельных участках равны то работы силы тяжести на них равны и т. д. Тогда полную работу на всем пути можно найти, сложив все эти работы:

Следовательно,

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. При движении вниз работа положительна, при движении вверх - отрицательна»

Почему же в технике и быту при подъеме грузов часто пользуются наклонной

плоскостью? Ведь работа перемещения груза по наклонной плоскости такая же, как и при движении по вертикали!

Это объясняется тем, что при равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда, груз при этом проходит больший путь. Больший путь - это плата а то, что по наклонной плоскости груз можно поднимать с помощью меньшей силы.

Задача, Шарик массой скатывается по рельсам, образующим круговую петлю радиусом (рис. 196). Какую работу совершает сила тяжести к моменту, когда шарик достигает высшей точки петли С, если в начальный момент он находится на высоте Н над нижней точкой петли?

Решение. Работа силы тяжести равна произведению ее значения на разность высот начального и конечного положений шарика. Начальная высота равна Н, а конечная, как это видно из рисунка, равна . Следовательно,

Упражнение 49

1. Зависит ли работа силы тяжести от длины траектории тела, на которое она действует? От массы тела?

2. Чему равна работа силы тяжести, если движущееся тело, на которое она действует, пройдя некоторую траекторию, вернулось к исходной точке?

3. Тело брошено под некоторым углом к горизонту. Описав параболу, тело упало на землю. Чему равна работа силы тяжести, если начальная и конечная точки траектории лежат на одной горизонтали?

4. Какая сила совершает работу при движении тела без трения по наклонной плоскости? Зависит ли эта работа от длины наклонной плоскости?

5. Камень массой брошен так, что он описал траекторию, показанную на рисунке 197, а. Какова работа силы тяжести при таком движении камня? Сравните ее с работой при движении того же камня по траекториям, изображенным на рисунках 197, б и в.

6. Какую работу совершает человек массой 75 кг, когда он поднимается по лестнице с первого этажа до пятого, если высота каждого этажа равна (Движение человека считать равномерным)

7. Тело массой 2 кг брошено вертикально вверх и поднялось на высоту 10 м. Качая по величине и по знаку работа совершена силой тяжести?

8. Лыжник спускается с горы высотой 60 м. Тотчас после спуска он оказывается на склоне соседней горы и поднимается по ней на высоту 40 м (рис. 198), Какую по величине и по знаку работу совершает сила тяжести при этом движении лыжника? Масса лыжника равна 80 кг.

9. Маятник совершает одно полное колебание. Какова работа силы тяжести при этом движении маятника?

Вычислим работу силы тяжести mg , совершаемую при перемещении материальной точки (тела) массой m из положения 1 в положение 2. Используя формулу (4.2) получим,

Из чертежа видно, что dScos=dh; тогда выражение для А 12 можно преобразовать так:

Полученное выражение для А 12 показывает, что независимо от вида траектории работа по перемещению материальной точки (тела) в поле тяжести зависит только от ее начальной и конечной высоты:

4.1.2. Работа силы всемирного тяготения

Вычислим работу, совершаемую силой всемирного тяготения со стороны тела массой М при перемещении тела массой m из положения, характеризуемого радиус-вектором r 1 в положение с радиус-вектором r 2 (см. рис. 4.5).

Гравитационное поле является центральным, поскольку сила тяготения действует вдоль линии соединяющей материальную точку m (или центр масс этого тела) с центром О поля тяготения. По определению работы (4.2) имеем:

,

где сила F определяется законом (2.12).

Из рисунка видно, что dScos=dr, поэтому dA=F(r)dr, и для А 12 имеем:

Полученное выражение не содержит сведений о траектории движения тела, и можно утверждать, что работа центральной силы зависит только от начального и конечного расстояния r 1 иr 2 движущейся точки до силового центра.

4.1.3. Работа силы упругости

Вывод формулы для работы силы упругости проводится аналогично выводу для силы всемирного тяготения. Эта работа равна

Здесь r 1 и r 2 – величина абсолютной деформации тела в начальном и конечном состояниях. Эти деформации представляют собой координаты точки приложения внешней (деформирующей) силы при условии, что начало координат соответствует недеформированному состоянию тела. Как в ранее рассмотренных случаях, работа силы оказывается независимой от формы траектории точки приложения силы, и определяется только ее начальным и конечным положениями.

Глава 5. Энергия

    Энергия – это способность тела (системы) совершать работу.

Энергия служит универсальной количественной мерой движения и взаимодействия всех видов материи. Различают два вида механической энергии: потенциальную и кинетическую.

5.1. Потенциальная энергия

Пусть на материальную точку или механическую систему действуют только консервативные и гироскопические силы, не зависящие от времени. Говоря иначе, материальная точка находится в стационарном поле сил. Примем условно за нулевое какое-либо состояние системы. Рассматривая иные состояния, назовем потенциальной энергией системы в некотором ином состоянии величину U, равную работе консервативных сил, совершаемой при переводе системы из этого состояния в нулевое.

    Потенциальной энергией системы в некотором состоянии называют скалярную величину U, равную работе консервативных сил совершаемой при переводе системы из этого состояния в состояние, условно принятое за нулевое.

Поскольку работа консервативных сил не зависит от траектории движения материальной точки, то ее потенциальная энергия зависит только от начального состояния системы. Это означает, что потенциальная энергия системы определяется ее состоянием. Возможность произвольно выбрать нулевое состояние (нулевого уровня потенциальной энергии) означает, что потенциальная энергия системы определяется не однозначно, а с точностью до произвольной постоянной С, зависящей от сделанного выбора. Действительно, если за нулевое состояние условно принять состояние, изображаемое точкой О (см. рис.5.1), то потенциальная энергия U М системы, находящейся в состоянии, изображаемом точкой M, равна работе А МО, совершенной силами поля при переходе из состояния М в состояние О.

Если принять за начальное точку О I , то потенциальная энергия точки М будет равна работе
по перемещению из М в О I . Вследствие консервативности сил поля работа по траектории МО равна работе по траектории МО I О:

А МО =
+
.

Заметим, что работа
вполне определенная величина, зависящая только от выбора точек О и О I . Таким образом, при изменении положения начальной точки О потенциальная энергия изменяется на постоянную величину:

.

Из сказанного выше следует, что потенциальная энергия в положении О равна нулю. Однако ее можно считать равной не нулю, а некоторому произвольному значению. Тогда, при переходе системы из состояния М в нулевое, необходимо говорить не о потенциальной энергии состояния М, а о разности потенциальных энергий в состоянии М и О. Произвол в выборе постоянной C не влияет ни на теоретические выводы, ни, тем более, на ход физических процессов. Существенной оказывается не абсолютная величина потенциальной энергии U, а ее изменение –
, которое не содержит произвольной постоянной С.

Пусть система перешла из состояния M в состояние N. Работу A MN , совершенную при этом консервативными силами, можно выразить через потенциальные энергии состояний M и N.

Пусть (см. рис. 5.2) этот переход осуществлен через точку О, по траектории MON. Тогда A MN =A MON =A MO +A ON . По определению потенциальной энергии можно записать: U M =A MO +C, U N = A NO +C, где С – одна и та же постоянная. Имеем:

Разность потенциальных энергии начального и конечного состояний U M -U N представляет собой ее убыль (убыль равна приращению, взятому с противоположным знаком). Полученное соотношение играет важную роль: оно позволяет утверждать, что:

    работа консервативных сил, действующих на тела механической системы равна убыли потенциальной энергии системы:

Конкретный вид функции U, определяющей величину потенциальной энергии зависит от характера действующих сил, или от природы силового поля. В разделах 4.1.1 – 4.1.3 получены выражения для работы консервативных сил различной природы. Сравнивая соотношения (4.11), (4.12) и (4.13) с соотношением (5.1) легко придти к выводу, что потенциальная энергия:

    в поле силы тяжести определяется соотношением

    в поле силы упругости определяется соотношением

.

Определение потенциальной энергии в поле силы всемирного тяготения имеет особенность. Соотношение (4.12) получено непосредственным вычислением работы силы всемирного тяготения:

Как правило, тела считают равной нулю. Это оправдано тем, что на бесконечно большом расстоянии (r 2 =) сила тяготения обращается в ноль и энергия взаимодействия отсутствует, т. е. U  =0. Из формулы (4.17) следует, что А 1  =-U=U  -U 1 .

    Итак, имеем для потенциальной энергии в поле тяготения соотношение

Замечания

1. При выводе соотношения (4.12) не учитывалось возможное движение центра притяжения. Можно показать, что полученное соотношение остается справедливым и при учете движения тяготеющего центра. Величина работы зависит только от относительного перемещения тяготеющих тел и не зависит от абсолютных перемещений каждого из них.

2. Потенциальная энергия системы в наиболее общем случае представляет собой сумму

,

где
– внешняя потенциальная энергия системы, связанная с действием на неё внешних консервативных сил. Эта составляющая потенциальной энергии всегда аддитивна. Внутренняя потенциальная энергия системы
, обусловленная действием внутренних консервативных сил, должна учитывать взаимодействие всех частей системы, и, в общем случае, не является аддитивной величиной. Условие аддитивности полной потенциальной энергии выполнимо только в случае слабого взаимодействия частей системы, когда им можно пренебречь.

Похожие публикации