Программа мониторинга окружающей среды. 3 Программа мониторинга окружающей среды

Рассмотрим системный подход к анализу данных наблюдений в различных программах мониторинга и выявим, какие особенности вносит фактор географического масштаба наблюдений в исполнение той или иной программы.

Мониторинг источников

Состав газовых выбросов в источнике полностью определяется в качественном и количественном отношениях технологией и ее совершенством. Уровни концентраций ЗВ в источнике превышают ПДК СС в десятки тысяч раз. Аналитическая задача не сложна, поскольку состав известен и достаточно стабилен, а уровни концентраций высоки и не требуют предварительного концентрирования пробы. Все трудности связаны с взятием представительной пробы из источника, поскольку газовые потоки часто гетерогенны, нагреты до высокой температуры и неоднородны по времени и диаметру газохода. Здесь перспективны неконтактные методы анализа, не требующие взятия проб. Данный уровень мониторинга в этом пособии не рассматривается.

Импактный мониторинг

Состав и уровни концентраций в значительной мере (но не полностью) определяются технологиями производств, создающих загрязнение. В данном случае физико-химические процессы в окружающей среде и метеорологические условия начинают играть существенную роль в создании наблюдаемых уровней концентраций ЗВ. Последние иногда превышают ПДК СС в десятки раз. Наблюдается тесная связь между расположением источников, их характеристиками, направлением и скоростью ветра и полями концентраций ЗВ. Наблюдения осуществляются на стационарных, передвижных и подфакельных постах (см. раздел 4.4).

Региональный мониторинг

Значительное удаление от предприятий приводит к тому, что уровни концентраций ЗВ оказываются ближе к фоновым, обычно в пределах ПДК СС или даже ниже. Аналитическая задача усложняется не только вследствие необходимости предварительного концентрирования примесей, но и сильной вариабельности их величин и качественного состава. Мониторинг в этом случае относится к аэроаналити- ческим задачам, в которых роль воздушных течений исключительно велика. Необходим учет всей региональной деятельности, включая и сельскохозяйственную, при этом прямую связь между загрязнением атмосферы и конкретными технологиями установить нелегко. Обычно приходится иметь дело с целым рядом вторичных веществ, возникших в результате фотохимических и биологических процессов.

Региональный мониторинг дает возможность стыковать данные импактного и глобального фонового мониторинга, а также позволяет выявить основные пути распространения ЗВ на большие расстояния. Непосредственные сведения о состоянии загрязнения атмосферы на региональном уровне могут быть получены по данным наблюдений в небольших населенных пунктах, расположенных вдали от крупных городов, при условии, что источники загрязнения воздуха в этих пунктах отсутствуют. Сведения о региональном фоновом загрязнении атмосферы получают также из данных сети постов наблюдений за трансграничным переносом загрязняющих веществ.

Наблюдения за трансграничным переносом загрязняющих веществ проводятся в рамках «Совместной программы наблюдения и оценки распространения загрязнителей воздуха на большие расстояния в Европе - ЕМЕП» (Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe - ЕМЕР) на четырех станциях ЕМЕП, расположенных в СевероЗ-ападном регионе и Центральной части России. Работы по программе ЕМЕП предусматривают регулярный анализ содержания в атмосфере и атмосферных осадках химических соединений, определяющих кислотно-щелочной баланс, а также оценку концентраций и нагрузок соединений серы и азота в СевероЗ-ападном и Центральном районах России.

По данным наблюдений доминирующим кислотным анионом для российских станций ЕМЕП является сульфат-ион. Средние величины концентраций и выпадений ЗВ, определяющих трансграничное загрязнение, относительно невелики и по существующим представлениям не могут вызвать заметных негативных экологических эффектов.

Для осуществления программы мониторинга кислотных выпадений и их воздействия на состояние природных экосистем в восточной части азиатского континента и архипелагов в западной части Тихого океана создана «Сеть мониторинга кислотных осадков в Восточной Азии - EANET» (Acid Depisition Monitoring Network in East Asia). На территории России действуют четыре станции мониторинга, три из которых расположены в Байкальском регионе и одна в Приморском крае. Постоянные измерения на станциях EANET на территории России проводятся с 2001 г., по данным наблюдений на всех российских станциях EANET в воздухе среди газовых примесей преобладало содержание S0 2 .

Снежный покров как индикатор регионального загрязнения

воздуха

В региональных системах мониторинга атмосферного воздуха большое внимание уделяется наблюдениям за степенью загрязнения снежного покрова. Это и понятно, поскольку его загрязнение исключительно четко коррелирует с загрязнением атмосферного воздуха и несет информацию о «сухих» и «мокрых» выпадениях.

На примере свинца, ртути и меди установлены достоверные корреляции, выраженные следующими уравнениями регрессии:

IPbJ в почве = 1324 [РЬ] в атмосферном воздухе + 6,3.

ПДК РЬ в воздухе (0,3 мкг/м 3) соответствует концентрация в почве 400 мг/кг;

[Си] в почве = 526 [Си] в атмосферном воздухе + 457.

ПДК Си в воздухе (2,0 мкг/м 3) соответствует концентрация в почве 1500 мг/кг;

В почве = 1,3 в атмосферном воздухе + 0,01;

ПДК Hg в воздухе (0,3 мкг/м 3) соответствует концентрация в почве 0,4 мг/кг.

В настоящее время в нашей стране организована система мониторинга снежного покрова, функционирующая на базе сети снегомерной съемки. Последняя проводится Росгидрометом как часть программы получения данных для Государственного водного кадастра (ГВК), одна из целей которого - учет всех запасов поверхностных вод страны.

Снегомерная съемка издавна использовалась для определения запасов влаги в почве, что необходимо знать при сельскохозяйственных работах. На территории России ранее функционировало около семи тысяч снегомерных пунктов, поэтому придание им новой функции - измерения концентрации приоритетных ЗВ - стало совершенно естественным дополнением к их работе.

Достоинства мониторинга снежного покрова состоят в следующем:

  • отбор проб весьма прост и не требует специального оборудования;
  • послойный отбор проб позволяет определить историю загрязнения воздушной среды на протяжении всего снежного сезона;
  • снег самым естественным образом обеспечивает концентрирование примесей по сравнению с воздушной средой, что упрощает последующую задачу анализа примесей;
  • только одной пробы на максимуме влагосодержания достаточно, чтобы получить среднеинтегральные концентрации приоритетных примесей за снежный период;
  • мониторинг снежного покрова дает возможность оценить величину трансграничного переноса серы и азота аммонийного.

Из семи тысяч упомянутых пунктов снегомерной съемки 560 производят химический мониторинг. Плотность сети в европейской части России - один пункт на 8000 км 2 , в азиатской части - один пункт на 30 тыс. км 2 . Мониторинг охватывает практически всю площадь РФ - 18,3 млн км 2 .

Отбор проб производится один раз в год на максимуме влагосодержания. В различных регионах России время взятия пробы меняется. Например, в Московской области проба берется во 2-й или в 3-й декаде марта, а на острове Диксон - в 3-й декаде апреля или даже во 2-й декаде мая.

Наблюдения организованы за следующими катионами и анионами: Na, К, Mg, Са, NH 4 , СГ, NO3, S0 4 2 “, НСО3 и pH. Около 30 % пунктов дают информацию о тяжелых металлах и полиароматических углеводородах.

Наиболее плотная сеть пунктов наблюдения была создана в густонаселенных регионах, а также вдоль западной границы СССР. Эти пограничные станции были ответственны за осуществление мониторинга трансграничных переносов. Около 40 % пунктов оценивают загрязненность снега вокруг городов, 40 % - контролируют распространение ЗВ от промышленных центров в более чистые регионы, а 20 % - выполняют функции фонового мониторинга. Наибольшая частота проявления закисления снежного покрова (pH = 4,0-5,6) составляет 42 % в регионах Урала и 54 % на Севере Западной Сибири. На севере Европейской территории России закисление отмечается в 26 % случаев.

Границы распространения снежного покрова на обширных территориях можно фиксировать и с помощью космической информации. Для изучения динамики изменения снежных площадей снимки делают повторно, несколько раз. Оперативное картографирование снежного покрова и скорость отступания его границ в весенний период традиционно используются для решения практических задач, прежде всего для гидрологических прогнозов.

Средствами гидрологического моделирования определяется во- дозапас, осуществляется прогноз стока, снегового половодья в бассейнах рек. Ряд параметров для этого - площадь бассейна реки, покрытая снегом, лесистость, распаханность и др. - можно получить дистанционными методами, а некоторые параметры оценить косвенно. Например, зоны, охваченные снеготаянием, выявляются в ближнем ИК-диапазоне спектра, а мощность снежного покрова рассчитывается по ряду последовательных снимков, скорости продвижения границ снегонакопления и температуре воздуха.

Оперативные данные о снегозапасе бассейнов рек служат основой для принятия решений, например, о частичном спуске водохранилищ в период весеннего снеготаяния для предотвращения паводков. В перспективе планируется перейти к определению из космоса мощности снежного покрова средствами микроволновой радиометрической съемки. Тем самым будет возможно для бассейнов крупных рек напрямую получать карты снегозапаса, а имея данные о плотности снега, - водозапаса снежного покрова.

Сезонный снежный покров играет исключительную роль в процессах саморазвития горных регионов, определяет формирование и режим речного стока, оледенения и снежных лавин. Оказывая существенное воздействие на климат, он сам служит индикатором изменения климата.

Карты распределения снежного покрова, полученные по результатам дистанционного зондирования, помогают понять пространственные особенности и взаимосвязи ледниковых систем, оценить вклад разных факторов в формирование ледников и условий их существования. Точную информацию о режиме, распределении и изменчивости снежного покрова необходимо иметь для успешной реализации водохозяйственных мероприятий и регулирования водных ресурсов в бассейнах рек горных территорий при имеющемся дефиците воды в степной зоне.

Снег является хорошим индикатором распространения загрязнений вокруг крупных городов. Загрязняющие вещества выпадают из атмосферы в сухом виде и с осадками и накапливаются в снежном покрове на больших расстояниях от источников - промышленных предприятий, транспортных коммуникаций и т. п. Загрязнение снега влияет на яркость изображения на космических снимках, что дает возможность вместе с результатами обработки проб снега картографировать площади и интенсивность загрязняющих воздействий.

Наиболее ощутимы различия в характеристиках снежного покрова в городах и на фоновых территориях весной, хотя закладываются они еще зимой. При снеготаянии эти контрасты становятся более выраженными за счет накопления ЗВ, вытаивающих из снега (плотность тона соответствует степени загрязненности снега).

Фоновый мониторинг

Рост выбросов ЗВ в атмосферу в результате процессов индустриализации и урбанизации ведет к увеличению содержания примесей на значительном расстоянии от источников загрязнения и к глобальным изменениям в составе атмосферы, что, в свою очередь, может привести ко многим нежелательным последствиям, в том числе и к изменению климата. В связи с этим необходимо определять и постоянно контролировать уровень загрязнения атмосферы далеко за пределами зоны непосредственного действия промышленных источников и тенденцию его дальнейших изменений.

Всемирной метеорологической организацией (ВМО) в 60-е годы XX в. была создана мировая сеть станций мониторинга фонового загрязнения атмосферы (БАПМоН). Ее цель состояла в получении информации о фоновых уровнях концентрации атмосферных составляющих, их вариациях и долгопериодных изменениях, по которым можно судить о влиянии человеческой деятельности на состояние атмосферы.

Нарастающая острота проблемы загрязнения окружающей среды в глобальном масштабе привела к созданию в 1970-е гг. комитета ООН по окружающей среде (UNEP/ЮНЕП), которым было принято решение о создании Глобальной системы мониторинга окружающей среды (ГСМОС), предназначенной для наблюдения за фоновым состоянием биосферы в целом и прежде всего за процессами ее загрязнения.

Станции БАПМоН с 1989 г. переименованы в станции ГСА (Глобальной службы атмосферы ВМО, www.wmo.int), они ответственны за проведение наблюдений и своевременную отправку полученных первичных данных в курирующие их Управления по гидрометеорологии (УГМ) и Главную геофизическую обсерваторию (ГГО) им. А.И. Воейкова.

На УГМ возлагаются задачи обеспечения и контроля работы фоновых станций, а также внедрения на них предлагаемых для сети новых методов контроля фонового состояния атмосферы. ГГО является национальным научно-методическим центром работ по фоновому мониторингу атмосферы в рамках программы ГСА ВМО. В настоящее время на территории РФ в сеть ГСА входят пять фоновых станций - Усть-Вым (республика Коми), Шадзатмаз (Северный Кавказ), Памятная (Курганская обл.), Туруханск (Красноярский край), Хужир (о. Ольхон на Байкале).

Размещение станций

Как правило, фоновые наблюдения по специальной программе фонового экологического мониторинга проводят в биосферных заповедниках и на заповедных территориях. Ранее биосферные заповедники были расположены по всей территории СССР. В них осуществляются оценка и прогнозирование загрязнения атмосферного воздуха путем анализа содержания в нем взвешенных частиц, свинца, кадмия, мышьяка, ртути, бенз(а)пирена, сульфатов, диоксида серы, оксида азота, диоксида углерода, озона, ДДТ и других хлорорганических соединений. Программа фонового экологического мониторинга включает также определение фонового уровня ЗВ антропогенного происхождения во всех средах, включая биоты. Помимо измерения состояния загрязнения атмосферного воздуха на фоновых станциях производятся также метеорологические измерения.

Информация, получаемая с фоновых станций, позволяет оценивать состояние и тенденции глобальных изменений загрязнения атмосферного воздуха. Фоновые наблюдения проводятся также с помощью научно-исследовательских судов в морях и океанах.

Считается, что для всей Земли достаточно 30-40 базовых станций на суше и до 10 - на акватории Мирового океана. Число региональных станций и их расположение должны обеспечивать достаточно быстрое выявление всех негативных тенденций в данном регионе. На территории России находится пять станций комплексного фонового мониторинга (СКФМ), которые расположены в биосферных заповедниках: Воронежском, Приокско-Террасном, Астраханском, Кавказском, Алтайском.

При организации станциий комплексного фонового мониторинга

обращают внимание на то, что их местоположение по своим ландшафтным и климатическим характеристикам должно быть репрезентативным для данного региона. Оценка репрезентативности начинается с анализа климатических, топографических, почвенных, ботанических, геологических и других материалов.

После выбора района необходимо учесть имеющиеся на данной территории источники загрязнения. При наличии крупных локальных источников (административно-промышленных центров с населением более 500 тыс. человек) расстояние до наблюдательного полигона СКФМ должно составлять не менее 100 км. Если это выполнить невозможно, то следует расположить СКФМ таким образом, чтобы повторяемость воздушного потока, обусловливающего перенос загрязняющих веществ от источника в направлении станции, не превышала 20-30 %.

СКФМ включает стационарный наблюдательный полигон и химическую лабораторию. Наблюдательный полигон составляют пробоотборные площадки, гидропосты и в ряде случаев наблюдательные скважины. На полигоне выполняется отбор проб атмосферного воздуха и атмосферных осадков, вод, почв, растительности, а также проводятся гидрометеорологические и геофизические измерения.

Площадка размером 50 х 50 м, на которой размещаются пробоотборные установки и измерительные приборы, называется опорной (базовой) площадкой фоновой станции. Она должна находиться на ровном участке ландшафта с малой степенью закрытости горизонта, вдали от строений, лесных полос, холмов и других препятствий, способствующих возникновению локальных орографических возмущений, т. е. особенностей рельефа местности. Площадку оборудуют установками для отбора проб воздуха, осадкосборниками, газоанализаторами, типовым комплектом метеорологических приборов.

Химическая лаборатория станции располагается на расстоянии не ближе 500 м от опорной площадки, в ней проводят обработку и анализ той части проб, которая не подлежит пересылке в региональную лабораторию: содержание в атмосферном воздухе взвешенных частиц (пыли), сульфатов и диоксида серы; измерение pH, электропроводности, концентрации анионов и катионов в атмосферных выпадениях.

Станции ГСА - фоновые станции подразделяют на три категории: базовые, региональные и континентальные.

Базовые станции следует располагать в наиболее чистых местах, в горах, на изолированных островах. Основной их задачей является наблюдение за глобальным фоновым уровнем загрязнения атмосферы, не испытывающим влияния никаких локальных источников.

Региональные станции должны находиться в сельской местности, не менее чем в 40 км от крупных источников загрязнения. Их цель - обнаружение в районе станции долгопериодных колебаний атмосферных составляющих, обусловленных изменениями в использовании земли и другими антропогенными воздействиями.

Континентальные станции охватывают более широкий спектр исследований по сравнению с региональными станциями. Они должны размешаться в отдаленных районах, чтобы в радиусе 100 км не было источников, которые могли бы повлиять на локальные уровни загрязнения.

Программы наблюдения на станциях

На станциях КФМ реализуется один из принципов фонового мониторинга - комплексное изучение содержания загрязняющих веществ в компонентах экосистем. В связи с этим программа наблюдений на СКФМ включает систематические измерения содержания загрязняющих веществ одновременно во всех средах (табл. 4.1), дополненные гидрометеорологическими данными.

Таблица 4.1. Список компонентов, подлежащих контролю на станциях КФМ

Компонент

Окружающая среда

атмосфера

атмосферные

выпадения

поверхностные и подземные воды

Диоксид серы

Оксид углерода

Диоксид углерода

Углеводороды

3,4-бенз(а)пирсн

Хлорорганические

соединения

Хлорфторуглеводороды

Анионы и катионы

Радионуклиды

Тяжелые металлы

Перечень включенных в программу веществ составлен с учетом таких их свойств, как распространенность и устойчивость в окружающей среде, способность к миграции на большие расстояния, степень негативного воздействия на биологические и геофизические системы различных уровней.

В атмосферном воздухе подлежат измерению среднесуточные концентрации: взвешенных веществ, озона, оксидов углерода и азота, диоксида серы, сульфатов, 3,4-бенз(а)пирена, ДЦТ и других хлорорга- нических соединений, свинца, кадмия, ртути, мышьяка, показателя аэрозольной мутности атмосферы.

В атмосферных осадках подлежат измерению в суммарных месячных пробах концентрации: свинца, ртути, кадмия, мышьяка, 3,4-бенз(а)пи- рена, ДЦТ и других хлорорганических соединений, pH, анионов и катионов.

Метеорологические наблюдения включают наблюдения за:

  • температурой и влажностью воздуха;
  • скоростью и направлением ветра;
  • атмосферным давлением, облачностью (количеством, формой, высотой);
  • солнечным сиянием;
  • атмосферными явлениями (туман, метели, грозы, пыльные бури и т. п.);
  • атмосферными осадками (количеством и интенсивностью);
  • снежным покровом (высотой, содержанием влаги);
  • температурой почвы (на поверхности и в глубине);
  • состоянием поверхности почвы;
  • радиацией (прямой, рассеянной, суммарной и отраженной) и радиационным балансом;
  • градиентами температуры, влажности и скорости ветра на высоте 0,5-10 м, градиентами температуры, влажности почвы на глубине 0-20 см;
  • тепловым балансом.

В обязательную программу наблюдений на базовых станциях ГСА включены наблюдения за содержанием диоксида серы, аэрозольной мутностью атмосферы, радиацией, взвешенными аэрозольными частицами, химическим составом осадков.

На региональных станциях программа наблюдений включает измерение атмосферной мутности, концентрации взвешенных аэрозольных частиц, определение химического состава атмосферных осадков.

Программа наблюдений на фоновых станциях разных категорий может быть расширена за счет увеличения числа определяемых в атмосфере газов, в частности, малых газовых компонентов, объемная концентрация которых менее 1 % и которые, преобразуясь в атмосфере, могут превратиться в аэрозольные частицы.

Любые наблюдения по программе фонового мониторинга должны сопровождаться комплексом обязательных метеорологических наблюдений - видимости, атмосферных явлений, температуры и влажности воздуха, направления и скорости ветра, атмосферного давления. Поэтому фоновые наблюдения желательно проводить на базе метеорологических станций.

По мнению экспертов ООН, первые пять загрязняющих атмосферу веществ, подлежащих контролю, располагаются в следующем по-

Таблица 4.2. Классификация загрязняющих веществ по их приоритетности

Класс приоритетности

Примесь

Среда

Тип программы мониторинга

S0 2 и взвешенные частицы

Воздух

Радионуклиды (Sr 90 , Cs 137)

Пища

Озон

Воздух

И (тропосфера)

Хлорорганические соединения и

Биота, человек

Ф (стратосфера)

диоксины

Биота, человек

Кадмий

Нитраты, нитриты

Вода, пища

Оксиды азота

Воздух

Ртуть

Пища, вода

Свинец

Воздух, пища

Диоксид углерода

Воздух

Оксид углерода

Воздух

Углеводороды нефти

Морская вода

Фториды

Пресная вода

Асбест

Воздух

Мышьяк

Питьевая вода

Микротоксины

Пища

Микробиологические загряз

Пища

нения

Воздух

Реакционноспособные загряз

нения

рядке: S0 2 , Оз, NO x , Pb, С0 2 (табл. 4.2). Необходимо отметить, что поступление этих веществ в приземный слой атмосферы в результате антропогенной деятельности сравнимо с естественным поступлением.

Научно обоснованный мониторинг окружающей среды осуществляется в соответствии с Программой. Программа должна включать в себя общие цели организации, конкретные стратегии его проведения и механизмы реализации.

Ключевыми элементами Программ мониторинга окружающей среды являются:

  • · перечень объектов, находящихся под контролем с их строгой территориальной привязкой (хорологическая организация мониторинга);
  • · перечень показателей контроля и допустимых областей их изменения (параметрическая организация мониторинга);
  • · временные масштабы - периодичность отбора проб, частота и время представления данных (хронологическая организация мониторинга).

Кроме того, в приложении в Программе мониторинга должны присутствовать схемы, карты, таблицы с указанием места, даты и метода отбора проб и представления данных.

Системы наземного дистанционного наблюдения

В программах мониторинга широко задействовано дистанционное зондирование окружающей среды с использованием самолетов или спутников, снабженных многоканальными датчиками.

Различают два вида дистанционного зондирования.

  • 1. Пассивное обнаружение земного излучения, испускаемого или отраженного от объекта или в окрестностях наблюдения. Наиболее распространенным источником излучения является отраженный солнечный свет, интенсивность которого измеряется пассивными датчиками. Датчики дистанционного зондирования окружающей среды настроены на конкретные длины волн - от далекого инфракрасного, до далекого ультрафиолета, включая и частоты видимого света. Громадные объемы данных, которые собираются при дистанционном зондировании окружающей среды требуют мощной вычислительной поддержки. Это позволяет проводить анализ слабоотличающихся различий в радиационных характеристиках среды в данных дистанционного зондирования, успешно исключать шумы и «ложные цветовые изображения». При нескольких спектральных каналах удается усилить контрасты, которые незаметны для человеческого глаза. В частности, при задачах мониторинга биоресурсов можно различать тонкие отличия изменения концентрации в растениях хлорофилла, обнаружив области с различием питательных режимов.
  • 2. При активном дистанционном зондировании со спутника или самолета излучается поток энергии и используется пассивный датчик для обнаружения и измерения излучения, отраженного или рассеянного объектом изучения. Для получения информации о топографических характеристиках исследуемой области часто используется ЛИДАР, что особенно эффективно, когда территория велика и ручная съемка будет дорогостояща.

Дистанционное зондирование позволяет собирать данные об опасных или труднодоступных районах. Применение дистанционного зондирования включают мониторинг лесов, последствия действия изменения климата на ледники Арктики и Антарктики, исследованиях прибрежных и океанских глубин.

Данные с орбитальных платформ, полученные из различных частей электромагнитного спектра в сочетании с наземными данными, представляет информацию для контроля тенденций проявления долгосрочных и краткосрочных явлений, природных и антропогенных. Другие области применения включают управление природными ресурсами, планирование использования земли, а также различные области наук о Земле.

Интерпретация и представление данных

Интерпретации данных экологических мониторинга, даже полученных от хорошо продуманной программы, является часто неоднозначной. Часто имеются результаты анализа или «предвзятых результатов» мониторинга, или достаточно спорное использование статистики, чтобы продемонстрировать правильность той или иной точки зрения. Это хорошо видно, например, в трактовке глобального потепления, где сторонники утверждают, что СО 2 уровни увеличились на 25% за последние сто лет в то время как противники утверждают, что уровень CO 2 только поднялся на один процент.

В новых научно-обоснованных программах мониторинга окружающей среды разработан ряд показателей качества, чтобы интегрировать значительные объемы обрабатываемых данных, классифицировать их и интерпретировать смысл интегральных оценок. Так, например, в Великобритании используется система GQA. Эти общие оценки качества классифицируют реки на шесть групп по химическим критериям и биологическим критериям.

Научно обоснованный мониторинг окружающей среды осуществляется в соответствии с Программой. Программа должна включать в себя общие цели организации, конкретные стратегии его проведения и механизмы реализации.

Ключевым элементом любой Программы мониторинга окружающей среды является:

Перечень объектов, находящихся под контролем, их территориальная привязка (хорологическая организация мониторинга);

Перечень показателей контроля и допустимых областей их изменения (параметрическая организация мониторинга);

Временные масштабы - периодичность отбора проб, частота и время представления данных)хронологическая организация мониторинга).

Кроме того, в приложении в Программе мониторинга должны присутствовать таблицы с указанием места, даты и метода отбора проб и представления данных.

Системы наземного дистанционного наблюдения. В настоящее время в программах мониторинга помимо традиционного «ручного» пробоотбора сделан упор на сбор данных с использованием электронных измерительных устройств дистанционного наблюдения в режиме реального времени.

Использование электронных измерительных устройств дистанционного наблюдения проводят используя подключения к базовой станции либо через телеметрической сети, либо через наземные линии, сотовые телефонные сети или другие телеметрические системы.

Преимущество дистанционного наблюдения является то, что в одной базовой станции для хранения и анализа могут использоваться многие каналы данных. Это резко повышает оперативность мониторинга при достижении пороговых уровней контролируемых показателей, например, на отдельных участках контроля. Такой подход позволяет по данным мониторинга предпринять немедленные действия, если пороговый уровень превышен.

Использование систем дистанционного наблюдения требует установки специального оборудования (датчиков мониторинга), которые обычно маскируются для снижения вандализма и воровства, когда мониторинг проводится в легко доступных местах.

Системы дистанционного зондирования. В программах мониторинга широко задействовано дистанционное зондирование окружающей среды с использованием самолетов или спутников, снабженных многоканальными датчиками. Различают два вида дистанционного зондирования.

А) Пассивное обнаружение земного излучения, испускаемого или отраженного от объекта или в окрестностях наблюдения. Наиболее распространенным источником излучения является отраженный солнечный свет, интенсивность которого измеряется пассивными датчиками. Датчики дистанционного зондирования окружающей среды настроены на конкретные длины волн - от далекого инфракрасного, до далекого ультрафиолета, включая и частоты видимого света.

Громадные объемы данных, которые собираются при дистанционном зондировании окружающей среды требуют мощной вычислительной поддержки. Это позволяет проводить анализ слабоотличающихся различий в радиационных характеристиках среды в данных дистанционного зондирования, успешно исключать шумы и «ложные цветовые изображения». При нескольких спектральных каналах удается усилить контрасты, которые незаметны для человеческого глаза. В частности, при задачах мониторинга биоресурсов можно различать тонкие отличия изменения концентрации в растениях хлорофилла, обнаружив области с различием питательных режимов.

Б) При активном дистанционном зондировании со спутника или самолета излучается поток энергии и используется пассивный датчик для обнаружения и измерения излучения, отраженного или рассеянного объектом изучения. Для получения информации о топографических характеристиках исследуемой области часто используется ЛИДАР, что особенно эффективно, когда территория велика и ручная съемка будет дорогостояща.

Дистанционное зондирование позволяет собирать данные об опасных или труднодоступных районах. Применение дистанционного зондирования включают мониторинг лесов, последствия действия изменения климата на ледники Арктики и Антарктики, исследованиях прибрежных и океанских глубин.

Данные с орбитальных платформ, полученные из различных частей электромагнитного спектра в сочетании с наземными данными, представляет информацию для контроля тенденций проявления долгосрочных и краткосрочных явлений, природных и антропогенных. Другие области применения включают управление природными ресурсами, планирование использования земли, а также различные области наук о Земле.

Эффективность экологического мониторинга окружающей природной среды зависит во многом от научного обоснования его методологических и теоретических основ, показателей антропогенных нарушений и изменений в биосфере, критериев оценки разных факторов. Решение этих вопросов может существенно повысить уровень значимости результатов, полученных в ходе реализации программы экологического мониторинга окружающей среды.

Сложность организации мониторинга окружающей среды зависит от его уровня. С учетом уровня экологического мониторинга для его эффективного осуществления должны быть созданы сети станций, пункты, посты наблюдений, оснащенных современным специальным оборудованием. Не менее важным вопросом организации полноценного функционирования системы экологического мониторинга окружающей природной среды является ее финансовое и технологическое обеспечение.

Негативные последствия хозяйственной деятельности и техногенного воздействия человека на окружающую среду для биосферы сегодня уже объективная реальность. Однако негативные результаты антропогенного воздействия в современных условиях развития человеческой цивилизации не являются неизбежными.

Во многом ухудшение состояния окружающей среды связаны с нерациональным использованием природных ресурсов, низким уровнем разработки и дальнейшего внедрения современных безотходных технологий, ошибками в экологической и технической политике, малой изученностью возможных последствий антропогенного воздействия на экосистему.

Таким образом, постоянный мониторинг окружающей среды текущего состояния и грамотное определение тенденций изменения окружающей природной среды являются чрезвычайно важным для долгосрочного прогнозирования качества экологической системы и практических действий по ее улучшению.

окружающий среда мониторинг система

Назначение;

Информационное, программное, картографическое обеспечение мониторинга и их структура;

Подсистемы обеспечения мониторинга ОС.

Экологическая информация является основой всесторонней оценки технических нововведений, природопреобразующих действий человека состоит из трехосновных блока:

Информационного;

Программного;

Картографического.

Работы по созданию комплексного мониторинга антропогенных изменений окружающей среды, должны представлять, систему контроля, основанную на всестороннем наблюдении, анализе конкретного состояния и на прогнозировании тенденций изменения важнейших экологических факторов. К последним относятся физические, химические и биологические параметры природной среды. Они фиксируются по некоторой пространственно-временной структуре, определяемой в зависимости от интенсивности загрязнителей, закономерностей их распространения, близости к населенным пунктам. Структура мониторинга окружающей среды приведена на рис. 6.1.

Общая схема математического обеспечения системы мониторинга содержит монитор (центральный диспетчер), управляющий работой отдельных подсистем. Среди них подсистема сбора информации, ее хранения и первичной обработки, подсистема отображения информации, подсистема расчета концентрации, составления прогнозов и т.п. Монитор выполняет следующие функции: организацию взаимодействия между отдельными подсистемами, организацию службы времени, тестовый контроль системы наземных измерений и другие служебные функции.

Подсистема сбора информации осуществляет связь между вычислительным центром и аппаратурой стационарных постов и передвижных лабораторий, первичную сортировку и оперативное хранение собранных данных, тестовый контроль блоков сети наземных измерений.

Подсистема передачи информации осуществляет передачу собранной и обработанной информации ее пользователям.

Подсистема хранения и первичной обработки информации состоит из различных баз данных. Подсистема расчетов и прогнозов содержит базу моделей переноса загрязнений с учетом метеорологических факторов рельефа и т.п., а также базу моделей для построения прогнозов.

Подсистема отображения предназначена для документирования результатов контроля загрязнений и выбросов, а также для расчетов и прогнозов. Отображение результатов может осуществляться в картографической форме либо в виде таблиц, текстовых справок и т.п. Возможно и сочетание различных форм отображения информации.

Базой данных называется совокупность хранимых операционных данных, используемых прикладными системами некоторого предприятия. В соответствии с общей структурой сети наземных измерений созданы следующие основные базы данных: по воздуху; выбросам и отходам; водным объектам; картографии.

Система сбора данных по качеству воздуха получает информацию о качественном и количественном состоянии метеорологических и физических величин, полученных от автоматических приборов для измерения выбросов, фоновых параметров, метеорологических автоматических приборов, передвижных лабораторий и при изучении движения автотранспорта. Информация заносится в память и обрабатывается для дальнейшего получения параметров, которые будут использоваться непосредственно при планировании природоохранных мероприятий.

Весь массив данных по водным объектам делится на две части: MACRO и MICRO. В MACRO потребитель получает данные по запрашиваемому региону либо в рамках экономических границ, либо в пределах административного деления. В MICRO содержатся сведения по предметной области и организациям (различной детализации).

Рис 6.1.

Картографическое обеспечение мониторинга. Специфические задачи мониторинга предъявляют особые требования к картографическому методу в отношении его оперативности при анализе и обработке полученной информации. В рамках этих требований картографический метод определяется как многоцелевая система слежения за состоянием окружающей среды и факторами, воздействующими на нее с помощью комплекса базовых, оценочных и оперативных карт.

Картографическое обеспечение предусматривает следующие блоки:

Исходной (базовой) информации, включающей в себя картографические данные о природных условиях, хозяйственном использовании территории, а также о состоянии явления, процесса или параметра окружающей среды, за которым ведется наблюдение.

оценочно-прогнозной информации, содержащей карты оценки наблюдаемого явления, прогнозы его развития во времени и в пространстве и, кроме того, рекомендательные карты для принятия решений.

оперативного прогноза и контроля, где создаются оперативные данные наблюдаемого явления. Этот блок непосредственно связан с поступающими данными Гидрометеослужбы, наблюдениями на станциях мониторинга. Главная цель блока -- оперативное представление текущей информации в картографическом виде.

картографических данных оценивает результаты изменений в окружающей среде, их влияние на хозяйственную деятельность и здоровье человека, намечает долгосрочные мероприятия по рациональному использованию благоприятных тенденций или уменьшению отрицательных факторов.

Первые два блока образуют фонд исходной картографической информации. Они обеспечивают мониторинг необходимыми картографическими данными. Базы картографической информации имеют большое значение для реализации системы мониторинга.

Для формирования и функционирования баз данных и картографического отображения данных применяются автоматические картографические системы. Их отличительной особенностью является то, что в состав технических средств этой системы должны входить как минимум ЭВМ, графический видеоэкран, цифрователь и графопостроитель. Общая схема работы такова: на первом этапе используются цифрователи для цифрования информации и ввода ее в базу данных, на втором -- видеоэкран для интерактивной переработки информации, на третьем -- строятся карты на графопостроителе, цветном струйном печатающем устройстве или графическом видеоэкране.

К блоку оценочно-прогнозной информации можно отнести карты распределения температур, влажности, направления и скорости ветра по метеорологическим станциям и постам.

На основании этой информации получаются серии гидрологических, метеорологических карт и карт распределения промышленных отходов, карты распределения температур и загрязнения воздуха по различным показателям по всей территории, карты показателей водных объектов в черте города. Таким образом можно создавать различные блоки и серии карт, необходимые для анализа экологической обстановки.

Экологической информатизации придается такое важное значение -- именно на ее основе можно решить глобальные проблемы, и прежде всего экологическую. Без создания баз данных и знания экологической информации, без полного развития экологической гласносности как свободного движения упомянутой информации нельзя будет перейти к планетарному управлению экоразвитием. Без него модель устойчивого развития не более чем утопия, да и сам переход на безбумажную (электронную, а в перспективе и фотонную) информатику поможет сберечь биосферу. Уже в ходе создания концепции информатизации общества было установлено, что в области экологии и здравоохранения убытки и потери из-за отсутствия современных средств информационного обеспечения во много раз превышают все допустимые затраты на информатизацию.

Экологическое районирование и состояние здоровья населения республики Узбекистан.

Для оценки экологической ситуации институтами (НИПТИ «Атмосфера» и НПХЦ «Экология водного хозяйства») Госкомприроды разработана методология и проведено экологическое районирование территории Республики Узбекистан. В основу районирования положено административно-территориальное деление республики; за минимальную районируемую территориальную единицу (таксой) принят административный район, город республиканского или областного подчинения. Экологически ситуация каждого таксона оценивается по 18 экологическим индикаторам (критериям), которые, наряду с традиционным делением территорий по степени экологической напряжённости (допустимая, критическая, чрезвычайная, экологическое бедствия), имеют балльную оценку и с учётом средне-взвешенной балльной оценки подразделяются на две категории опасные и особо опасные.


Рис. 6.2

Районирование территории по степени экологической напряжённости (в разрезе областей) осуществляется следующим образом: 400 и более

баллов - чрезвычайно-напряжённая; 250 ...400 - сильно-напряжённая, 150..250 - средне-напряжённая, 120 ...150 - слабо-напряжённая и менее 120 баллов - ненапряжённая.

Самой неблагополучной в экологическом отношении является территория Республики Каракалпакстан, где сложилась и продолжает усугубляться чрезвычайно-напряженная экологическая обстановка.

Сильно-напряжённая экологическая обстановка - в Хорезмской, Ферганской и Навоийской областях.

Экологическая обстановка Самаркандской и Бухарской областей характеризуется как средне-напряжённая; Сурхандарьинской, Ташкентской, Сырдарьинской и Андижанской областей - как слабо-напряжённая; Наманганской, Джизакской, Кашкадарьинской областей и города Ташкента ненапряжённой).

Следует отметить, что приведённое ранжирование территории по степени экологической напряжённости не исключает наличия чрезвычайно неблагополучных «горячих точек» и в относительно "благополучных" областях. Так, например, в Сурхандарьинской области, в зону чрезвычайной экологической ситуации попадают Термезский и Музрабадский районы, в Бухарской области - г.Гиждуван, в Ташкентской - г.Янгиюль и другие.

Результаты районирования станут основой для разработки законодательства, направленного на социальную защиту населения, проживающего в зонах экологического бедствия, и могут быть использованы при разработке Национальных планов действий по охране окружающей среды и экологическому обеспечению устойчивого развития Республики Узбекистан.

Влияние состояния окружающей среды на здоровье населения.

К началу 1997 года численность населения, постоянно проживающего на территории республики, составило 23,5 млн. человек. Плотность - 52,7 чел/км 2 . Значительная часть населения (62%) проживает в сельской местности (табл. 6.2).

Многолетний анализ показал, что средняя продолжительность жизни в республике довольно низка и составляет 69,3 года (мужчины - 66,1 и женщины - 72,4)*. В республике достаточно высок уровень рождаемости. В 1996 году он составил 27,3 новорожденных на 1000 человек населения. Число лиц младше 15 лет достигает 41%. В то же время число престарелых значительно ниже, чем во многих других странах мира.

Неординарная структура и высокий естественный прирост населения увеличивает требования к системе службы здравоохранения и определяет приоритеты.

Таблица 6.2. Численность населения Республики Узбекистан за период 1992-1996 гг.

Несмотря на то, что младенческая смертность на 1000 родившихся в 1996 г. по сравнению с 1985 г. снизилась с 45,3 в до 24,2, этот важнейший демографический показатель по-прежнему выше, чем во многих других республиках СНГ, и гораздо выше, чем в развитых странах*. Кроме того, в последние 10-15 лет наблюдается устойчивый рост показателей общей заболеваемости по первичной обращаемости среди взрослого и детского населения. Показатель общей заболеваемости (без инфекционной) взрослых и подростков возрос с 2925,3 в 1985 г. до 3743,6 в 1996 г.

В 1996 г. лица с заболеваниями органов дыхания составили 22,9%, органов пищеварения - 12,9%. Преобладание этих заболеваний в общей структуре даёт основание сделать вывод об их связи с неблагоприятной экологической ситуацией (табл. 6.3, 6.4).

Особенно неблагоприятное воздействие на здоровье населения оказывает состояние окружающей среды в Приаралье, в Сарыассийском районе Сурхандарьинской области, а также в районах с интенсивным применением пестицидов В Хорезмской области к группе риска (возможное развитие различных заболеваний) отнесено свыше 370 тыс. человек (37% от числа обследованных), в Республике Каракалпакстан - свыше 550 тыс. человек (45% обследованных). Предрасположенность к болезням в Хорезмской области составляет 72,3% населения, в Республике Каракалпакстан -70%.

Заболеваемость населения туберкулезом, раком пищевода, болезнями крови, кроветворной системы, органов пищеварения в Приаралье в несколько раз превышает среднереспубликанские показатели.

* В Японии - у мужчин она равна 75,8 лет, у женщин - 81,9.

Таблица 6.3 Структура заболеваемости населения республики с впервые установленным диагнозом, %

Болезни органов дыхания

Болезни органов пищеварения

Болезни нерв. сист. И органов чувств

Болезни крови и кретв.х органов

в т.ч. анемия

Травмы и отравления

Болезни сист. Кровообращения

Болезни эндокр. сист.

Психические растройства

Осложнение берем, и родов

Новообразрование

Отдельное состояние, возникшее в перинатальном периоде

Врожденные анемии

Таблица 6.4 Динамика смертности по республике с учётом причин смертности (на 100 000 чел. населения)

Похожие публикации