Уравнение движения свободной атмосферы

Понятие сплошной среды

4. Силы, действующие в атмосфере.

Силы, действующие в атмосфере делятся на массовые и поверхностные:

Массовые или объемные силы.

К массовым силам относятся те силы, которые действуют на каждый элементарный объем воздуха, и обычно, рассчитываются на единицу массы. К ним относятся:

Сила тяжести представляет собой векторную сумму двух сил: силы земного притяжения, направленной к центру Земли, и центробежной силы, возникающая из-за вращения Земли вокруг своей оси и направленная по радиусу круга широты, проходящей через рассматриваемую точку.

Сила Кориолиса (отклоняющая сила вращения земли) связана с вращением Земли вокруг своей оси и действует на движущиеся относительно Земли частицы воздуха (на воздушные течения атмосферы). Сила Кориолиса возникает в результате переносного вращательного движения Земли и одновременного движения частиц воздуха относительно земной поверхности.

где? - угловая скорость вращения Земли.

Применяя формулы векторного анализа получим составляющие силы Кориолиса по осям координат.

Поверхностные силы. К поверхностным силам относятся те силы, которые действуют на соприкасающиеся поверхности слоя воздуха.

Сила давления (сила барического градиента) возникает за счет неравномерного распределения давления. Вектор силы барического градиента определяется соотношением

а его составляющие, отнесенные к единице массы, по осям координат, имеют следующий вид:

Сила трения возникает при движении воздуха, когда различные его объемы имеют разную скорость движения. Если рассматривать движение воздуха, как движение вязкой жидкости, то при движении двух соседних слоев жидкости с различными скоростями, между ними развиваются касательные силы внутреннего трения (касательное напряжение), или силы вязкости. Составляющие этой силы по осям координат:

Кинематический коэффициент турбулентной вязкости, а - динамический коэффициент вязкости.

Анализ состояния электрических цепей

Вычисляем ток ветвей и общей ток цепи: A Действующие значение тока: = 1...

Атомное ядро

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных). 2...

Вакуумная плазменная технология высоких энергий

Если реактивный поток действительно чисто реактивное явление, то в атмосфере гелия оно должно происходить без всякого движения газа. Для того, чтобы проверить это, выход APPJ-источника был помещен в запечатанную коробку...

География атомной энергетики РФ

Смоленская АС расположена недалеко от западной границы России, в Смоленской области. Ближайшие региональные центры: Смоленск - 150 км, Брянск - 180 км, Москва - 350 км. На Смоленской АЭС эксплуатируются три энергоблока с реакторами РБМК-1000...

Колебания комбинированного осциллятора

Рассмотрим следующую задачу. Положительный заряд q сосредоточен на материальной точке массой m...

Магнитоупругий эффект

Магнитоупругие датчики. Вопрос о максимальной точности, которая может быть достигнута при измерении усилий с помощью магнитоупругих датчиков, по существу...

Понятие сплошной среды

Волны в атмосфере, процесс распространения периодических или почти периодических движений, налагающихся на общий перенос воздуха. Кроме упругих продольных звуковых и взрывных волн, в атмосфере существует несколько типов атмосферных волн...

Радиальные силы Fp стремятся оттолкнуть одну обмотку от другой. Внутренняя обмотка под действием этой силы сжимается, а наружная - растягивается. , Н (23) где средняя длина витка обмотки, см; см; (24) где высота обмотки...

Проектирование преобразовательного трансформатора типа ТМПЖ–10000/35

Осевые сжимающие силы действуют на межкатушечную изоляцию (прокладки): Н; где величина, определяющая разность высот обмоток, см; см; где m - величина...

Расчет и анализ равновесной относительной влажности воздуха над каплями чистой воды и растворов солей

Система, пришедшая в фазовое равновесие, может находиться в нем без всяких видимых изменений до тех пор, пока внешние условия среды остаются постоянными...

Расчет и конструирование несинусоидального трансформатора малой мощности

Рис. 2. Разложение в ряд Фурье Используя программу OrCad, смоделируем входное напряжение трансформатора и определим его спектральный состав. Разложение входного сигнала в ряд Фурье представлено на рис...

Реконструкция электрической подстанции "Каюковская"

Характеристика существующей подстанции Подстанция 110/35/6 «Каюковская» введена в работу в 1973 году. Она является подстанцией проходного (транзитного) типа...

Сохраняющиеся величины. Законы сохранения

Силы, работа которых не зависит от пути, по которому двигалась частица, а зависит лишь от начального и конечного положений частицы, называются консервативными. Легко показать, что работа сил на любом замкнутом пути равна нулю...

Тяговая задача для электропоезда с 3 вагонами массой 180 тонн и электровозом ВЛ-10 при заданном профиле пути

Кривые движения поезда определяются из решения уравнения движения поезда, которое можно представить как, где - коэффициент, представляющий собой ускорение поезда...

Электростатика проводников

В электрическом поле на поверхность проводника действуют со стороны поля определенные силы. Плотность потока импульса в электрическом поле в пустоте определяется известным максвелловским тензором напряжений: Силе же...

В атмосфере постоянно наблюдаются движения воздуха. Непосредственной причиной их служит неравномерное распределение давления, обусловленное в свою очередь неоднородностью поля температуры. Каковы же силы вызывающие эти движения:

3.1 Силы, действующие в атмосфере.

Силы, действующие в атмосфере можно разделить на 2 группы: массовые и поверхностные. Массовые – это силы, которые действуют на каждый элемент массы (объема) независимо от того, существуют ли рядом другие воздушные частицы. Такими силами являются:сила тяжести, отклоняющая сила вращения Земли,центробежная сила.Поверхностные силы представляют собой силы взаимодействия некоторого объема воздуха и окружающей среды. Это силабарического градиента и вязкие силы.

В механике доказывается, что при движении любого тела (в том числе воздуха) относительно вращающейся Земли оно отклоняется от первоначального направления вправо в северном полушарии и влево – в южном, сила направлена под углом 90 0 к скорости. Она не меняет модуль , а лишь меняет направление. Причина возникновения силы заключается в том, что тело сохраняет свое направление движения, а суточное вращение Земли изменяет направление меридианов и параллелей. Поэтому с Земли кажется, что тела откланяются от направления меридианов и параллелей. Горизонтальная составляющая силы Кориолиса равнаA= 2*v*Sinφ, гдеv– скорость движения тела. Следовательно эта сила увеличивается по направлению к полюсам (за счетSinφ) и с увеличением скоростиv. На экваторе она равна 0.

3.1.3 Сила барического градиента.

В атмосфера почти всегда наблюдаются горизонтальные градиенты атмосферного давления. При этом воздух стремится перемещаться из мест с более высоким давлением в места с более низким давлением. Мерой неравномерности давления является горизонтальный барический градиент (
. Поэтому чем больше барический градиент, тем интенсивнее движение воздуха. Если барический градиент отнести к единице массы, т.е.
, то по смыслу (и по размерности) это выражение является ускорением или силой, отнесенной к ед. массы. По направлению эта сила в каждой точке барического поля совпадает с нормалью к изобаре в сторону убывания давления. Сила барического градиента является единственной силой, которая вызывает движение воздуха. Все другие силы могут лишь тормозить движение или отклонять его от направления градиента.

Если бы на воздух действовало только ускорение, которое получает воздух под действием барического градиента, то движение воздуха постоянно бы ускорялось. Однако в действительности скорость ветра не может превышать нескольких десятков м/с. Из этого следует, что кроме силы барического градиента на воздух действуют другие силы, которые уравновешивают силу градиента.

3.1.4. Сила трения

Сила трения в атмосфере возникает, когда объемы (слои) движущегося воздуха имеют разные скорости. Между слоями воздуха имеет место определенная вязкость, которая препятствует скольжению их относительно друг друга. Поэтому чем больше скорость воздуха (их разности), тем больше сила трения или R= -kv(гдеk– коэффициент трения), тем сильнее затормаживается движение и изменяется его направление.

Природа вязкости между слоями воздуха двоякая: она молекулярная и турбулентная. Однако расчеты показывают, что коэффициент турбулентной вязкости на несколько порядков больше молекулярного. В связи с этим молекулярной вязкостью можно пренебречь. Тогда
, гдеR– сила трения;p– плотность воздуха; τ – касательное напряжение внутреннего трения;z– направление движения воздуха (перпендикулярно к стенке).

С высотой влияние трения в атмосфере быстро уменьшается. И на уровне 1000-1500 м оно практически исчезает. Эта высота потому называется уровнем трения, а стой атмосферы – слоем трения (пограничным слоем).

При неустойчивой атмосфере уровень трения выше, чем при устойчивой.

3.1.5. Центробежная сила. Она возникает в том случае, если движение воздуха происходит по криволинейной траектории. В этом случае она равна: с =v 2 /r, гдеv– скорость движения;r– радиус кривизны движения. Для атмосферных движений с обычно мала, т.к. велико значениеr.

3.1.6. Уравнение движения

Таким образом в атмосфере на объем воздуха действуют выше названные силы. Уравнение движения в общем виде будет иметь вид:

3.1.7. Геострофический ветер, его изменения с высотой

Рассмотрим один из частных случаев движения воздуха в атмосфере. Пусть частица воздуха, имеющая единицу массы, попала в атмосферу. При этом трение отсутствует и мы рассматриваем горизонтальное движение. Тогда под действием силы градиента давления частица начнет двигаться от высокого давления к низкому вдоль нормали к изобаре. Но как только она начнет двигаться на нее начнет действовать сила Кориолиса, которая будет отклонять движение частицы вправо от направления под прямым углом. В конце-концов, когда эти две силы уравновесятся частица будет совершать прямолинейное равномерное движение.

Такое движение называется геострофическим ветром.

Математически такое движение можно описать так.
, гдеG– сила барического градиента; А – сила Кориолиса. Или
= 2*v g *Sinφ, отсюда
.

Таким образом, геострофический ветер пропорционален градиенту давления и обратно пропорционален широте. На экваторе он не существует (т.к. = бесконечности). Для стандартных условий (t= 0 0 C,P= 1000гПа):
, где ∆P/∆n– в гПа на 100км,v g – в м/с.

Т.к. при геострофическом ветре сила трения не принимается во внимание, то такой ветер может наблюдаться лишь выше слоя трения, т.е. выше 1-1,5 км. С высотой из-за уменьшения ρ геострофический ветер усиливается.

Более общим случаем движения воздуха без трения является градиентное в поле криволинейных изобар (циклон, антициклон). В этом случае в уравнении движения входит помимо силы барического градиента и силы Кориолиса еще третья сила – центробежная, т.е.
- 2*v*Sinφ-
; илиv гр = - *r*Sinφ+
- для циклона.

Графически градиентный ветер можно изобразить следующим образом:

Здесь в циклоне силу барического градиента уравновешивают 2 силы А и С. Градиентный ветер направляется вправо под прямым углом к градиенту.

В антициклоне сила Кориолиса уравновешивается Gи С.

В обоих случаях градиентный ветер направлен по касательной к изобаре вправо от барического градиента.

Расчеты градиентного ветра (v гр) можно выразить через геострофический:

V гр.циклон =v g -
;V гр.антициклон =v g +
.

У земной поверхности воздух испытывает трение при движении относительно Земли. Особенно заметно влияние поверхности примерно до высот 50-100 м над Землей. Этот слой называется приземным (до 1-1,5 км – пограничный). В этом слое при формировании ветра необходимо учитывать силу трения, которая тормозит движение и меняет его направление. Рассмотрим схему соотношения сил в атмосфере в этом случае. В случае прямолинейных изобар барический градиент направлен перпендикулярно изобарам (G); ветерvи его направление уже будет дуть не вдоль изобар, а под острым углом от силы барического градиента α (вправо). Сила тренияRнаправлена в противоположную сторону движения воздуха. А уравновешивать силу барического градиента должны 2 силы: сила Кориолиса А и сила трения (А+R). Тогда из построения прямоугольника и учитывая, что сила А направлена под прямым углом кvи в право от него, находим положение силы Кориолиса.

Для определения скорости реального ветра нужно составить уравнение, где сумма трех сил равна нулю:G+A+R=0, подставив выражение для каждой силы, можно прийти к выражению дляv:v=*
, гдеk– коэффициент трения. Следовательно скорость ветра у Земли пропорциональна барическому градиенту и обратно пропорциональна коэффициенту трения и широте. Угол α между ветром и барическим градиентом составляет в умеренных широтах 60-75 0 над океанами и 40-50 0 – над сушей.

При круговых изобарах, т.е. в циклонах и антициклонах у Земли следует учитывать еще и центробежную силу С. Схема направления движения в этих случаях будет:

С высотой в слое трения скорость ветра растет, а направление приближается к изобаре (слева низкое давление). Изменение ветра с высотой в слое трения можно представить годографом, т.е. кривой которая еще называется спиралью Экмана. То ветер с высотой как бы вращается вправо.

В слое трения у поверхности обнаруживается суточный ход ветра, с maxв 14 часов,minночью или утром. Начиная примерно с высоты 500 м суточный ход обратный –maxночью,minднем. Такой суточный ход объясняется суточным ходом турбулентного обмена. Днем турбулентностьmax, поэтому сверху к поверхности опускаются вихри с повышенной скоростью, а снизу вверх – с пониженной. Поэтому днем внизуmax, а вверхуminскорости. Ночью внизуminинтенсивности турбулентности, а вверху, поэтому, вихри с повышенной скоростью остаются там и скорости здесь достигаютmax.

Силы, действующие в атмосфере.

Все силы, рассматриваемые в метеорологи, беруться на единицу массы. Если давление в горизонтальной плоскости неоднаково, то возникает поток воздуха в сторону наименьшего давления. Другими словами, возникает сила, заставляющая воздух двигаться. Она называется солой барического градиента и на единицу массы равна:

где ρ – плотность воздуха. Градиент давления dp/dn направлен в сторону роста давления. Движение, вызванное разностью давления, направлено в противоположную сторону. Поэтому, чтобы значения силы барического градиента было противоположным, в уравнении ставят знак минус.

Кроме этого есть еще и другие силы, которые оказывают влияние на движение воздуха. Это силы Кариолиса К, центробежная сила Z, трения F тр и сила тяжести g.

Сила Кариолиса К или, иначе, отклоняющая сила вращения Земли, является инерционной кажущейся силой. Она возникает потому, что Земля вращается вокруг своей оси и на единицу массы равна:

K = 2ω С sinφ, (14)

где ω угловая скорость вращения Земли, равная ω = 2 π /Т, где Т – период обращения Земли вокруг своей оси, Т = 24*60*60с;

С –скорость движения воздуха;

φ – широта места.

Таким образом, сила Кариолиса зависит от скорости движения и широты места. Сила Кариолиса действует только на движущиеся тела перпендикулярно направлению движения. Она наибольшая на полюсах, а на экваторе – равна нулю. В результате, тела перемещаются вдоль земной плоскости, отклоняются в северном полушарии вправо, а в южном – влево от перво начального направления их движения.

Центробежная сила Z. Центробежная сила является также кажущейся, инерционной силой, возникающей при движении по криволинейной траектории. Она направлена по радиусу от центра и на единицу массы равна:

Z = C 2 /r, (15)

где r – радиус кривизны.

Аналитическое выражение для силы трения F тр имеет сложный вид. В навигации решаются задачи в, так называемой геострофической модели, без учета силы трения, а сила трения вводится затем коэффициентом. И, наконец, есть еще известная всем сила тяжести g. Она часто рассматривается как константа.

Сила тяжести g. Несравненно больше других сил (9,81 ~ 10 м/с 2). Она действует вдоль вертикальной оси. Однако мы не замечаем в атмосфере заметных вертикальных движений, направленных к поверхности Земли (вниз). Это связано с тем, что такая большая сила уравновешивается столь же большой силой барического градиента по вертикали. Из основного уравнения статики следует:

g = - dp/dz (16)

Как видим, в левой части уравнения стоит сила тяжести, а в правой записана сила барического градиента по вертикали. Вертикальный барический градиент – большая величина, а значит и сила барического градиента велика. Аналогично, можно констатировать, что очень большая сила барического градиента по вертикали, не вызывает движений вверх так как уравновешивается силой тяжести. Эти силы находятся на одной оси, направленные в разные стороны и обычно уравновешивают друг друга.

Таким образом, на ветер, под которым мы понимаем горизонтальное движение воздуха, сила тяжести g не влияет. Ее проекция на горизонтальную плоскость равна нулю. Силы Кариолиса К и центробежная сила Z появляются лишь после того, как уже возникло движение. То есть, единственной силой, вызывающей движение воздуха, является сила барического градиента по горизонтали G r . Разность давлений в разных местах порождает движение воздуха, стремящееся сгладить эти различия. Остальные сила разворачивают движение относительно первоначального направления и тормозят его.

Все силы, рассматриваемые в метеорологи, беруться на единицу массы. Если давление в горизонтальной плоскости неоднаково, то возникает поток воздуха в сторону наименьшего давления. Другими словами, возникает сила, заставляющая воздух двигаться. Она называется солой барического градиента и на единицу массы равна:

где ρ – плотность воздуха. Градиент давления dp/dn направлен в сторону роста давления. Движение, вызванное разностью давления, направлено в противоположную сторону. Поэтому, чтобы значения силы барического градиента было противоположным, в уравнении ставят знак минус.

Кроме этого есть еще и другие силы, которые оказывают влияние на движение воздуха. Это силы Кариолиса К, центробежная сила Z, трения F тр и сила тяжести g.

Сила Кариолиса К или, иначе, отклоняющая сила вращения Земли, является инерционной кажущейся силой. Она возникает потому, что Земля вращается вокруг своей оси и на единицу массы равна:

K = 2ω С sinφ, (14)

где ω угловая скорость вращения Земли, равная ω = 2 π /Т, где Т – период обращения Земли вокруг своей оси, Т = 24*60*60с;

С –скорость движения воздуха;

φ – широта места.

Таким образом, сила Кариолиса зависит от скорости движения и широты места. Сила Кариолиса действует только на движущиеся тела перпендикулярно направлению движения. Она наибольшая на полюсах, а на экваторе – равна нулю. В результате, тела перемещаются вдоль земной плоскости, отклоняются в северном полушарии вправо, а в южном – влево от перво начального направления их движения.

Центробежная сила Z. Центробежная сила является также кажущейся, инерционной силой, возникающей при движении по криволинейной траектории. Она направлена по радиусу от центра и на единицу массы равна:

Z = C 2 /r, (15)

где r – радиус кривизны.

Аналитическое выражение для силы трения F тр имеет сложный вид. В навигации решаются задачи в, так называемой геострофической модели, без учета силы трения, а сила трения вводится затем коэффициентом. И, наконец, есть еще известная всем сила тяжести g. Она часто рассматривается как константа.

Сила тяжести g. Несравненно больше других сил (9,81 ~ 10 м/с 2). Она действует вдоль вертикальной оси. Однако мы не замечаем в атмосфере заметных вертикальных движений, направленных к поверхности Земли (вниз). Это связано с тем, что такая большая сила уравновешивается столь же большой силой барического градиента по вертикали. Из основного уравнения статики следует:

g = - dp/dz (16)

Как видим, в левой части уравнения стоит сила тяжести, а в правой записана сила барического градиента по вертикали. Вертикальный барический градиент – большая величина, а значит и сила барического градиента велика. Аналогично, можно констатировать, что очень большая сила барического градиента по вертикали, не вызывает движений вверх так как уравновешивается силой тяжести. Эти силы находятся на одной оси, направленные в разные стороны и обычно уравновешивают друг друга.

Таким образом, на ветер, под которым мы понимаем горизонтальное движение воздуха, сила тяжести g не влияет. Ее проекция на горизонтальную плоскость равна нулю. Силы Кариолиса К и центробежная сила Z появляются лишь после того, как уже возникло движение. То есть, единственной силой, вызывающей движение воздуха, является сила барического градиента по горизонтали G r . Разность давлений в разных местах порождает движение воздуха, стремящееся сгладить эти различия. Остальные сила разворачивают движение относительно первоначального направления и тормозят его.

Если бы характер воздушных течений зависел только от термической неоднородности поверхности земли и воздушных масс, то ветер определялся бы горизонтальным градиентом давления и движение воздуха совершалось бы вдоль этого градиента от высокого давления к низкому. При этом скорость ветра была бы обратно пропорциональна расстоянию между линиями одинакового давления, т. е. изобарами. Чем меньше расстояние между изобарами, тем больше градиент давления, а соответственно и скорость ветра.

Сила градиента давления. В теоретической метеорологии силы обычно относятся к единице массы. Поэтому, чтобы выразить силу градиента давления, действующего на единицу массы, следует величину градиента давления разделить на плотность воздуха. Тогда числовое значение силы барического градиента (Г) определится выражением:

где ρ – плотность воздуха, d ρ/ dn – градиент давления.

Под действием силы градиента давления (барического градиента) возникает ветер. Это значит, что если на некотором участке образуется избыток массы воздуха (высокое давление), то должен произойти отток его в область с недостатком воздуха (низкого давления). Этот отток тем сильнее, чем больше разность давления.


Таким образом, основной движущей силой возникновения движения воздуха является барический градиент. Если бы на воздушные частицы действовала только сила барического градиента, то движение их совершалось бы всегда в направлении этого градиента, подобно стоку воды от более высокого уровня к низкому. В действительности этого не происходит.

При крупномасштабных процессах к термической первопричине возникновения воздушных течений присоединяется действие целого ряда других факторов, которые значительно усложняют атмосферную циркуляцию. Поэтому как муссонная, так и междуширотная циркуляция, обусловленная действиями ряда сил и вихревой природой атмосферной циркуляции, осуществляется несравненно сложнее.

Отклоняющая сила вращения Земли. Изменение направления и скорости воздушных течений в первую очередь вызывается отклоняющей силой вращения Земли, или, как обычно называют ее, силой Кориолиса. Возникновение этой силы связано с вращением Земли вокруг своей оси. Под действием силы Кориолиса ветер дует не вдоль градиента давления, т. е. от высокого давления к низкому, а отклоняясь от него в северном полушарии вправо, в южном полушарии - влево.

На схеме (рис. 29, а) наглядно показано, как отклоняющая сила вращения Земли влияет на изменение направления движения воздуха, начавшегося вдоль градиента давления с постепенно возрастающей скоростью. Влияние других сил здесь не учитывается.

Предположим, что под действием силы барического градиента воздушная частица (обозначена кружком) начнет смещаться в направлении градиента (Г). В первое мгновение, как только появится скорость V 1 возникнет ускорение отклоняющей силы вращения Земли А 1 направленное перпендикулярно и вправо по отношению к скорости V 1 . Под влиянием этого ускорения частица переместится не вдоль градиента, а отклонится вправо; в последующее мгновение скорость движения частицы воздуха станет равной V 2 . Но вместе с этим сила Кориолиса изменится на А 2 . Под влиянием этого поворотного ускорения скорость частицы воздуха еще изменится, став равной V 3 . Не замедлит измениться и сила Кориолиса и т. д. В результате сила давления и отклоняющая сила вращения Земли уравновешиваются и движение воздушной частицы происходит вдоль изобар. Действие силы Кориолиса возрастает с увеличением скорости движения частиц и широты места. Она определяется выражением:

где ω - угловая скорость, φ - географическая широта, V - скорость движения.

Ускорение отклоняющей силы вращения Земли измеряется величинами от нуля на экваторе до 2ω V на полюсе.

Геострофический ветер. Простейшим видом движения является прямолинейное и равномерное движение без трения. В метеорологии оно называется геострофическим ветром. Однако такое движение можно допустить лишь теоретически. При геострофическом ветре предполагается, что, кроме силы градиента (Г), на воздух действует лишь отклоняющая сила вращения Земли (А). Когда движение равномерное, то обе эти силы, действуя в противоположные стороны, уравновешиваются и геострофический ветер направляется вдоль изобар (рис. 29, б). При этом низкое давление находится в северном полушарии слева, а в южном полушарии - справа.

При равновесии сил градиента давления и отклоняющей силы вращения Земли их сумма будет равна нулю. Это выражается следующим соотношением:

откуда получим, что скорость геострофического ветра

Отсюда следует, что скорость геострофического ветра прямо пропорциональна величине горизонтального градиента давления. Следовательно, чем гуще изобары на картах давления, тем сильнее ветер. Хотя в действительных условиях атмосферы чисто геострофический ветер почти не наблюдается, однако наблюдения показывают, что на высоте около 1 км и выше движение воздуха происходит приблизительно вдоль изобар, с небольшими отклонениями, вызванными другими причинами. Поэтому в практической работе вместо фактического ветра пользуются и геострофическим ветром. Кроме силы градиента давления и силы Кориолиса, на движение воздуха действуют сила трения и центробежная сила.

Сила трения. Сила трения направлена всегда в сторону, противоположную движению, и пропорциональна скорости. Она, уменьшая скорость воздушных потоков, отклоняет их влево от изобар, и движение происходит не вдоль изобар, а под некоторым углом к ним, от высокого давления к низкому. Посредством турбулентного перемешивания воздуха влияние трения передается в вышележащие слои, приблизительно до 1 км над поверхностью земли.

Влияние трения на направление и скорость движения воздуха изображено на схеме (рис. 30, а). На схеме представлено поле давления и движение воздуха под действием силы градиента давления, отклоняющей силы вращения Земли и трения. Под действием силы Кориолиса движение воздуха происходит не вдоль градиента давления Г, а под прямым углом к нему, т. е. вдоль изобар. Действительный ветер изображен стрелкой В, сила трения Т отклонена от направления ветра несколько в сторону. Сила Кориолиса показана под прямым углом к действительному ветру стрелкой К. Как видим, угол между действительным ветром В и силой трения Т составляет больше 90°, а угол между действительным ветром В и силой градиента давления Г меньше 90°. Так как сила градиента перпендикулярна изобарам, то действительный ветер оказывается отклоненным влево от изобар. Величина угла, составляемого изобарой и направлением действительного ветра, зависит от степени шероховатости земной поверхности. Отклонение происходит влево от изобар обычно под углом 20-30°. Над сушей трение больше, чем над морем, у поверхности земли влияние трения наибольшее, а с высотой оно уменьшается. На высоте около 1 км действие силы трения почти прекращаете.

Центробежная сила. Если изобары криволинейные, т. е. имеют, например, форму эллипса или окружности, то на движение


воздуха оказывает действие центробежная сила. Это сила инерции, которая направлена от центра к периферии по радиусу кривизны траектории движения воздуха. Под действием центробежной силы (в случае отсутствия трения) движение происходит по изобарам. При наличии же трения ветер дует под углом к изобарам в сторону низкого давления. Величина центробежной силы определяется из равенства

где V - скорость движения воздуха (скорость ветра), r - радиус кривизны его траектории.

Если принять, что движение воздуха происходит по окружности, то скорость его в любой точке траектории будет направлена по касательной к окружности (рис. 30, б и в). Как следует из этой схемы, сила Кориолиса (А) направлена (в северном полушарии) под прямым углом по радиусу вправо от скорости ветра ( V ). Центробежная сила (С) направлена от центра циклона и антициклона к их периферии, а сила градиента (Г) уравновешивает геометрическую сумму первых двух сил и лежит на радиусе окружности. Все три силы в этом случае связаны уравнением

где r - радиус кривизны изобар.

Из этого уравнения следует, что ветер направлен перпендикулярно градиенту давления. Это частный случай ветра при круговых изобарах в системе циклона. Такой ветер называется градиентным.

В северном полушарии в системе циклона (рис. 31, б) сила барического градиента направлена к его центру, а силы центробежная и Кориолиса, уравновешивающие ее, - в противоположную сторону. В случае антициклона (рис. 30, в) сила Кориолиса направлена к центру его, а центробежная сила и сила барического градиента - в противоположном направлении и уравновешивают первую.

Уравнение градиентного ветра в случае антициклона имеет следующий вид:

В южном полушарии, где отклоняющая сила вращения Земли направлена влево от скорости движения воздуха, градиентный ветер отклоняется от градиента давления влево. Поэтому в южном полушарии ветер в циклоне направлен по часовой стрелке а в антициклоне - против часовой стрелки.

Вне действия силы трения, т. е. выше 1 км, ветер по направлению и скорости приближается к градиентному. Разница между действительным и градиентным ветром обычно невелика. Однако эти небольшие отклонения действительного ветра от градиентного играют важную роль в изменении атмосферного давления.

Давление воздуха определяется его массой в столбе атмосферы сечением, равным единице площади. При неравномерном движении воздуха вследствие изменения его термических свойств и действующих сил происходит уменьшение или увеличение массы воздуха в столбе, а соответственно понижение или повышение атмосферного давления.

Главным фактором в изменении поля давления (барического поля) является отклонение действительного ветра от градиентного (на высотах). Когда направление и скорость действительного ветра соответствуют градиентному, происходит увеличение или уменьшение массы воздуха и изменение давления и могут возникать и развиваться атмосферные вихри - циклоны и антициклоны (см. ниже).

Отклонения ветра существенны в областях сходимости воздушных потоков в тропосфере п при большой кривизне потоков движущегося воздуха.


Поле давления. Структура поля давления, или барического поля атмосферы, довольно разнообразна. Во внетропических широтах у поверхности земли и на высотах всегда можно обнаружить большие или относительно малые по размерам циклоны и антициклоны, ложбины, гребни, седловины.

Циклоны - это крупнейшие атмосферные вихри, с низким давлением в центре. Движение воздуха в их системе в северном полушарии происходит против часовой стрелки. Антициклоны - вихри с высоким давлением в центре. Движение воздуха в их системе в северном полушарии происходит по часовой стрелке.

В южном полушарии в обеих системах циркуляция воздуха обратная, т. е. ветры в циклоне дуют по часовой стрелке, а в антициклоне - против часовой стрелки. Гребень - это вытянутая от центральной части антициклона область высокого давления с антициклонической системой циркуляции. Ложбина - это вытянутая от центральной части циклона область низкого давления с циклонической системой циркуляции. Седловина - это форма барического рельефа между двумя циклонами и двумя антициклонами, расположенными крест-накрест.

На рисунке 31 изображено поле давления у поверхности земли с системой ветров. Кроме двух циклонов и двух антициклонов, здесь представлены ложбины, гребни и седловина. Направление ветра показано стрелками, скорость - оперением. Чем больше расстояние между изобарами, тем меньше скорость ветра и меньше оперение. Такое изображение изобар и ветра принято на картах погоды (см. ниже).

Структура поля давления на земном шаре многообразна и сложна. Поэтому режим воздушных течений различен зимой и летом, у поверхности земли и на высотах, над материками и над океанами, не говоря уже о большой его изменчивости в средних и высоких широтах ото дня ко дню. Обычно средние месячные карты давления и ветра отображают лишь преобладающий перенос воздушных масс в течение месяца и скрывают многие интересные особенности атмосферных процессов, которые обнаруживаются на ежедневных картах погоды.

Похожие публикации