Ряд Фибоначчи. Ключ. Матрица Золотого Сечения. Золотое сечение Фибоначчи. Божественная мера красоты

Развитие человечества разграничивается определенными периодами в древнейшей и современной истории. Могут ли элементы ряда чисел Фибоначчи соответствовать хронологическим рубежам периодов в древнейшей и современной истории человечества, т. е. подчиняются ли рубежи периодов математической закономерности? Существует ли такая закономерность в других периодах: периодах мировой истории, периодах правления известных Российских государственных деятелей, и в датах современных событий, имеющих историческое значение? Цель нашей работы заключается в проведении аналогии между математикой и историей, то есть установлении некоторой связи. Для достижения данной цели необходимо было решить следующие задачи:

  • Познакомиться с числами Фибоначчи и золотым сечением, которое является самым гармоничным отношением;
  • Проверить, соответствуют ли рубежи периодов древнейшей, современной и мировой истории числам ряда Фибоначчи;
  • Рассчитать годы правления известных Российских государственных деятелей и найти их отношение;
  • Рассмотреть даты, имеющие историческое значение, во временных промежутках современной истории;
  • Проверить, являются ли полученные отношения между данными объектами известными математическими отношениями.

Объектами исследования будут являться археологические эпохи, периоды мировой истории, периоды правления известных Российских государственных деятелей, даты событий, имеющие историческое значение. Весьма полезными для нас оказались результаты исследований социолога - аналитика В. В. Дудихина, и метод поэта и переводчика А. Чернова, которые подтверждают математические закономерности чисел Фибоначчи, соответствующие хронологическим рубежам древнейшей истории человечества. Работа относится к прикладным исследованиям, ее результаты, выраженные с помощью математики, покажут связь между математикой и историей, которая подчиняется математическим законам.

Числа Фибоначчи и золотое сечение

Числовая последовательность, в которой, сумма двух соседних чисел дает значение следующего за ними является последовательностью Фибоначчи (например, 1+1=2; 2+3=5 (1,1,2,3,5,8,13,21,34,55 и т.д.)). Свойства различных членов последовательности, так называемые коэффициенты Фибоначчи, (т.е. постоянные отношения) определяются следующим образом:

  • Отношение каждого числа к последующему более и более стремится к 0,618 по увеличению порядкового номера. Отношение же каждого числа к предыдущему стремится к 1,618 (обратному к 0,618);
  • При делении каждого числа на следующее за ним через одно получаем число 0,382, наоборот - соответственно 2,618;
  • Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: ... 4,235; 2,618; 1,618; 0,618; 0,382; 0,236; упомянем также 0,5. Все они играют особую роль в природе, и в частности - техническом анализе.

Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.

Обратимся к числу 0,618, мы уже его встречали (коэффициент Фибоначчи). Это числовое значение золотого сечения.

Одна из пропорций чаще других встречающаяся в искусстве получила название золотое сечение - деление отрезка, при котором одна его часть во столько же раз больше другой, во сколько сама она меньше целой. Пропорциональные отношения, близкие к золотому сечению дают впечатление развитие форм, их динамики, пропорционального дополнения друг друга.

Исследования ученых

Обратимся к современным исследованиям: социолога - аналитика В.В. Дудихина, поэта и переводчика А. Чернова.

Социолог и аналитик В.В. Дудихин рассмотрел хронологию эпох, в качестве инструмента хронологии он избрал гармоническую систему числовых отношений, так называемый ряд Фибоначчи. В.В. Дудихин сопоставил числа ряда Фибоначчи и археологические эпохи. Его исследования показали, что некоторые элементы этой последовательности, действительно, соответствуют хронологическим рубежам в древнейшей истории человечества, особенно если к числам добавить наименование "тыс. лет до н. э.", или "тыс. лет тому назад", или просто "тыс. лет". Хронология и периодизация исторического развития с помощью ряда Фибоначчи разделена на 18 временных ступеней: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1 597, 2 584, что подтверждается 60% проверенных совпадений.

Так же, полезным нам окажется метод А.Чернова, в основу которого положено нахождение отношений частей одного целого, т.е. пропорциональные отношения.

Внимание Чернова привлекли рассуждения о золотом сечении и числе PI, которые восходят к Пифагору. Исследования Андрей Чернова позволили сделать заключение о том, что построение стихов древнего автора Слова о полку Игореве, состоящего из девяти песен, подчиняется математическим законам. А именно, если число стихов во всех трех частях (их 804) разделить на число стихов в первой и последней части (256), получается 3,14, т.е. число PI с точностью до третьего знака.

Вышеназванные исследования, представляют интерес, не только, в плане используемых методов, но и в плане полученных результатов. Опираясь на данные современных исследований можно предположить, что не только эти археологические эпохи, но и другие исторические периоды подчиняются математическим законам.

Связь между историческими периодами и законами математики

Проведем аналогию между рубежами исторических периодов, числами Фибоначчи и золотым сечением, основываясь на данные ученых и собственные исследования. Для этого рассмотрим некоторые рубежи исторических периодов, в хронологии с древнейшей и современной историей.

Проверим исследование социолога В.В. Дудихина рубежей исторических периодов в хронологии c древнейшей историей. Сопоставим рубежи исторических периодов с числами Фибоначчи, т.е. проведем их соответствие. Для этого рассмотрим рубежи периодов древнейшей истории:

Железный век датируется II тыс. н.э.. На Ближнем Востоке, Египте, Греции - с начала I тыс. н.э., в Африке - с I тыс. н.э.;

Бронзовый век датируется в Южной Америке с середины I тыс. н.э., в Тропической Африке с I тыс. н.э., в Европе с середины III тыс. до н.э., в Индии с конца III тыс. до н.э., в Египте с начала II тыс. до н.э., в Передней Азии с конца IV тыс. до н.э.;

Медный век (энеолит) датируется VIII - IV тыс. до н.э.;

Каменный век (палеолит) ранний датируется до 35 тыс. лет назад, поздний 35 - 13 тыс. лет назад;

Каменный век (мезолит) датируется с начала XX - VIII тыс.до н.э. поV - IV тыс. н.э.;

Каменный век (неолит) датируется VIII - III тыс. н.э.;

Если рассмотреть происхождение человека, то выделяют следующие рубежи периодов: Australopithecus anfmensis, 4 - 3,7 млн. лет назад, Australopithecus africanus, 3-2 млн. лет, Australopithecus boisei, 2,4 - 1,1 млн. лет, Homo rudolfensis, 2,5 - 1,8 млн. лет, Homo erectus, 1,8 - 400 тыс. лет, Homo neandertalensis, 220 - 27 тыс. лет Полученные результаты соответствуют числам Фибоначчи (1, 3, 8, 13, 21, 33, 233, 1597, 2584, 4181) или близки к ним.

Проведем исследование рубежей периодов мировой истории и предистории: Эпоха первобытно общинных отношений 2,5 мил. лет назад - III тыс. до н.э.; Древний мир III тыс. до н.э.- V тыс. н.э.; История средних веков V века - конец XV века; История нового времени XVI - XX в.; Современная эпоха XX - XXI в. Полученные результаты соответствуют числам Фибоначчи (3, 5, 13, 21) или близки к ним.

Проведем исследование периодов правления известных Российских государственных деятелей с 862 г. н.э.

Пересчитаем годы их правления:

Рюрик (862 - 879) - 17 лет; Василий III (1505 - 1533) - 28 лет; Иван Грозный (1533 - 1584) - 51 год; Романов М.Ф. (1613 - 1676) - 63 года; Пётр I (1682 - 1725) - 43 года; Екатерина II (1762 - 1796) - 34 года; Александр II (1855 - 1981) - 26 лет; Николай II (1894 - 1917); падение монархии Романовых 1917 до 1931 - 14 лет; Сталин И.В. (1931 -1953) - 22 года; Хрущев Н.С. (1953 - 1964) - 11 лет; Брежнев Л.И. (1964 - 1982) - 18 лет; Горбачев М.С. (1985 - 1991) - 6 лет; Ельцин Б.Н. (1991 - 1999) - 8 лет; Путин В.В. (2000 - 2008) - 8 лет.

Найдем отношения годов правления.

Если разделить годы правления Рюрика (17 лет) на годы правления Василия III (28 лет), то их отношение равно 0,607. Если разделить годы правления Василия III (28 лет) на годы правления Ивана Грозного (51 год), то их отношение равно 0,549. Если разделить годы правления Ивана Грозного (51 год) на сумму годов правления Василия III и Ивана Грозного (79 лет), то их отношение равно 0,646. Отношение годов правления Романова М.Ф. (63 года) к годам правления Петра I (43 года) равно 0,682. Отношение годов правления Екатерины II (34 года) к годам правления Романова М.Ф. (63 года) равно 0,54. Если разделить годы правления Петра I (43 года) на сумму годов правления Петра I и Екатерины II (77 лет), то их отношение равно 0,55. Отношение годов правления Сталина И.В. (22 года) к сумме годов от 1917 до 1953 (36 лет) равно 0,611 т.е. числовое значение золотого сечения с точностью до третьего знака;

Отношение годов правления Хрущева Н.С. (11 лет) к сумме годов от 1917 до 1964 (47 лет) равно 0,234. Отношения годов правления Хрущева Н.С. (11 лет) к годам правления Брежнева Л.И. (18 лет) и наоборот, равны соответственно 0,611 и 1,636. Данные отношения близки к фибоначчиевским коэффициентам (0,236; 0,618; 1,618) с точностью до третьего и второго знаков соответственно. Отношение годов правления Сталина И.В. (22 года) к сумме годов правления Сталина И.В. и Хрущева Н.С. (33 года) равно 0,666. Отношение годов правления Горбачёва М.С. (6 лет) к годам правления Хрущева Н.С. (11 лет) равно 0,545. Отношения годов правления Хрущева Н.С. (11 лет) к сумме годов правления Хрущева Н.С. и Брежнева Л.И. (29 лет) и наоборот, равно соответственно 0,379 и 0,620 т.е. фибоначчиевским коэффициентам (0,382; 0,618) с точностью до второго знака.

Рассмотрим временные промежутки, периоды правления известных Российских государственных деятелей, и даты некоторых событий в эти периоды, имеющие историческое значение.

  • Временной промежуток с 1984 по 1917 год, годы правления Николая II. Историческим событием является 1904 год - начало Русско-японской войны. Найдем отношение годов после данного события (13 лет), во временном промежутке, к годам всего временного промежутка (23 года). Отношение годов равно 0,565.
  • Временной промежуток с 1894 по 1931 год, с начала правления Николая II по начало правления Сталина И.В. Историческим событием является 1917 год - начало революции в России. Найдем отношение годов до данного события (23 года) к годам после данного события (14 лет). Отношение годов равно 1,64.
  • Временной промежуток с 1917 по 1931 год, падение монархии Романовых. Историческим событием является 1922 год - образование Союза Советских Социалистических республик. Найдем отношение годов до данного события (5 лет) к годам после данного события (9 лет). Отношение годов равно 0,556.
  • Временной промежуток с 1931 по 1953 год, годы правления Сталина И. В. Историческим событием является 1941 год - нападение Германии на СССР, Найдем отношение годов до данного события (10 лет) к годам данного временного промежутка (22 года). Отношение годов равно 0,454.
  • Временной промежуток с 1985 по 2000 год, с начала правления Горбачева М.С. по начало правления Путина В.В. Историческим событием является 1991 год - распад Союза Советских Социалистических республик. Найдем отношение годов до данного события (6 лет) к годам после данного события (9 лет). Отношение годов равно 0,666.

Полученные результаты соответствуют фибоначчиевским коэффициентам (0,618; 1,618) с точностью до второго знака или близки к ним.

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определённом отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение – гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений:

a : b = c : d .

Отрезок прямой AB можно разделить на две части следующими способами:

  • на две равные части – AB : AC = AB : BC ;
  • на две неравные части в любом отношении (такие части пропорции не образуют);
  • таким образом, когда AB : AC = AC : BC .

Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему:

a : b = b : c
или
c : b = b : a .

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. BC = 1/2 AB ; CD = BC

Из точки B восставляется перпендикуляр, равный половине AB . Полученная точка C соединяется линией с точкой A . На полученной линии откладывается отрезок BC , заканчивающийся точкой D . Отрезок AD переносится на прямую AB . Полученная при этом точка E делит отрезок AB в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если AB принять за единицу, BE = 0,382... Для практических целей часто используют приближённые значения 0,62 и 0,38. Если отрезок AB принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением:

x 2 – x – 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и даёт другое отношение 44: 56.

Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлинённого горизонтального формата.

Рис. 3.

Деление осуществляется следующим образом. Отрезок AB делится в пропорции золотого сечения. Из точки C восставляется перпендикуляр CD . Радиусом AB находится точка D , которая соединяется линией с точкой A . Прямой угол ACD делится пополам. Из точки C проводится линия до пересечения с линией AD . Точка E делит отрезок AD в отношении 56: 44.

Рис. 4.

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой .

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O – центр окружности, A – точка на окружности и E – середина отрезка OA . Перпендикуляр к радиусу OA , восставленный в точке O , пересекается с окружностью в точке D . Пользуясь циркулем, отложим на диаметре отрезок CE = ED . Длина стороны вписанного в окружность правильного пятиугольника равна DC . Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит её в пропорции золотого сечения.

Рис. 6. Построение золотого треугольника

Проводим прямую AB . От точки A откладываем на ней три раза отрезок O произвольной величины, через полученную точку P проводим перпендикуляр к линии AB , на перпендикуляре вправо и влево от точки P откладываем отрезки O . Полученные точки d и d 1 соединяем прямыми с точкой A . Отрезок dd 1 откладываем на линию Ad 1 , получая точку C . Она разделила линию Ad 1 в пропорции золотого сечения. Линиями Ad 1 и dd 1 пользуются для построения «золотого» прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввёл в научный обиход Пифагор , древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор своё знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса , храмов, барельефов, предметов быта и украшений из гробницы свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашёл, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображённый на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Рис. 7. Динамические прямоугольники

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящён математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 8.

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида . Во 2-й книге «Начал» даётся геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвящённым.

В эпоху Возрождения усиливается интерес к золотому делению среди учёных и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи , художник и учёный, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески , написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г. по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и её «божественную суть» как выражение Божественного Триединства – Бог Отец , Бог Сын и Бог Дух Святой (подразумевалось, что малый отрезок есть олицетворение Бога Сына, больший отрезок – Бога Отца, а весь отрезок – Бога Духа Святого).

Электронные книги:

  • Марио Ливио.

Окружающий мир, начиная с мельчайших невидимых частиц, и заканчивая далекими галактиками бескрайнего космоса, таит в себе много неразгаданных тайн. Однако над некоторыми из них уже приподнята завеса таинственности благодаря пытливым умам ряда ученых.

Одним из таких примеров является «золотое сечение» и числа Фибоначчи , составляющие его основу. Данная закономерность получила отображение в математическом виде и часто встречается в окружающей человека природе, еще раз исключая вероятность того, что она возникла в результате случая.

Числа Фибоначчи и их последовательность

Последовательностью чисел Фибоначчи называется ряд чисел, каждое из которых является суммой двух предыдущих:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

Особенностью этой последовательности являются числовые значения, которые получаются вследствие деления чисел этого ряда друг на друга.

Ряд чисел Фибоначчи имеет свои интересные закономерности:

  • В ряду чисел Фибоначчи, каждое число разделенное на следующее будет показывать значение, стремящееся к 0,618 . Чем дальше числа от начала ряда, тем точнее будет соотношение. К примеру, цифры взятые в начале ряда 5 и 8 будут показывать 0,625 (5/8=0,625 ). Если же взять числа 144 и 233 , то они покажут соотношение 0.618 .
  • В свою очередь, если в ряду чисел Фибоначчи разделить число на предыдущее, то результат деления будет стремится к 1,618 . Для примера использованы те же цифры, что оговаривались выше: 8/5=1,6 и 233/144=1,618 .
  • Число поделенное на следующее за ним через одно, будет показывать значение, приближающееся к 0,382 . И чем дальше от начала ряда взяты цифры, тем точнее значение соотношения: 5/13=0,385 и 144/377=0,382 . Деление цифр в обратном порядке будет давать результат 2,618 : 13/5=2,6 и 377/144=2,618 .

Используя вышеописанные методы расчета и увеличивая промежутки между цифрами можно вывести следующий ряд значений: 4.235, 2.618, 1.618, 0.618, 0.382, 0.236, который широко применяется в инструментах Фибоначчи на рынке форекс.

Золотое сечение или Божественная пропорция

Очень наглядно представляет «золотое сечение» и числа Фибоначчи аналогия с отрезком. Если отрезок АВ разделить точкой С в таком соотношении, чтобы соблюдалось условие:

АС/ВС=ВС/АВ, тогда это будет «золотое сечение»

ЧИТАЙТЕ ТАКЖЕ СЛЕДУЮЩИЕ СТАТЬИ:

Удивительно, но именно это соотношение прослеживается в ряду чисел Фибоначчи. Взяв несколько цифр из ряда, можно расчетом проверить, что это так. Например, такая последовательность чисел Фибоначчи …55, 89, 144 … Пусть число 144 является целым отрезком АВ, о котором упоминалось выше. Поскольку 144 является суммой двух предыдущих чисел, то 55+89=АС+ВС=144.

Деление отрезков покажет следующие результаты:

АС/ВС=55/89=0,618

ВС/АВ=89/144=0,618

Если принять отрезок АВ за целое, или за единицу, то АС=55 будет составлять 0,382 от этого целого, а ВС=89 будет равным 0,618.

Где встречаются числа Фибоначчи

Закономерную последовательность чисел Фибоначчи знали греки и египтяне еще задолго до самого Леонардо Фибоначчи. Такое название этот числовой ряд приобрел после того, как знаменитый математик обеспечил широкое распространение этого математического феномена в ученых рядах.

Важно отметить, что золотые числа Фибоначчи являются не просто наукой, а математическим отображением окружающего мира. Множество природных явлений, представителей растительного и животного мира имеет в своих пропорциях «золотое сечение». Это и спиралевидные завитки раковины, и расположение семян подсолнуха, кактусы, ананасы.

Спираль, пропорции ответвлений которой подчинены закономерностям «золотого сечения», лежит в основе образования урагана, плетения паутины пауком, формы многих галактик, переплетения молекул ДНК и множества других явлений.

Длина хвоста ящерицы к ее туловищу имеет соотношение 62 к 38. Отросток цикория, перед тем как выпустить листок, делает выброс. После того, как первый лист выпущен, происходит второй выброс перед выпуском второго листа, по силе равный 0,62 от условно принятой единицы силы первого выброса. Третий выброс равен 0,38, а четвертый - 0,24.

Для трейдера также большое значение имеет тот факт, что движение цены на рынке форекс часто подчинено закономерности золотых чисел Фибоначчи. На основе этой последовательность создан целый ряд инструментов, которые трейдер может использовать в своем арсенале

Часто используемый трейдерами инструмент « » может с высокой точностью показывать цели движения цены, а также уровни ее коррекции.

Последовательность Фибоначчи, ставшая известной большинству благодаря фильму и книге «Код да Винчи», это ряд чисел, выведенный итальянским математиком Пизанским Леонардо, более известным под псевдонимом Фибоначчи, в тринадцатом веке. Последователи ученого заметили, что формула, которой подчинен данный ряд цифр, находит свое отображение в окружающем нас мире и перекликается с другими математическими открытиями, тем самым открывая для нас дверь в тайны мироздания. В этой статье мы расскажем, что такое последовательность Фибоначчи, рассмотрим примеры отображения этой закономерности в природе, а также сравним с другими математическими теориями.

Формулировка и определение понятия

Ряд Фибоначчи - это математическая последовательность, каждый элемент которой равен сумме двух предыдущих. Обозначим некой член последовательности как х n. Таким образом, получим формулу, справедливую для всего ряда: х n+2 =х n +х n+1. При этом порядок последовательности будет выглядеть так: 1, 1, 2, 3, 5, 8, 13, 21, 34. Следующим числом будет 55, так как сумма 21 и 34 равна 55. И так далее по такому же принципу.

Примеры в окружающей среде

Если мы посмотрим на растение, в частности, на крону из листьев, то заметим, что они распускаются по спирали. Между соседними листьями образуются углы, которые, в свою очередь, образуют правильную математическую последовательность Фибоначчи. Благодаря этой особенности каждый отдельно взятый листочек, который растет на дереве, получает максимальное количество солнечного света и тепла.

Математическая загадка Фибоначчи

Известный математик представил свою теорию в виде загадки. Звучит она следующим образом. Можно поместить пару кроликов в замкнутое пространство для того, чтобы узнать, какое количество пар кроликов родится в течении одного года. Учитывая природу этих животных, то, что каждый месяц пара способна производить на свет новую пару, а готовность к размножению у них появляется по достижении двух месяцев, в итоге он получил свой знаменитый ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 - где показано количество новых пар кроликов в каждом месяце.

Последовательность Фибоначчи и пропорциональное соотношение

Этот ряд имеет несколько математических нюансов, которые обязательно нужно рассмотреть. Он, приближаясь медленнее и медленнее (асимптотически), стремится к некоему пропорциональному соотношению. Но оно иррациональное. Другими словами, представляет собой число с непредсказуемой и бесконечной последовательностью десятичных чисел в дробной части. Например, соотношение любого элемента ряда варьируется около цифры 1,618, то превосходя, то достигая его. Следующее по аналогии приближается к 0,618. Что есть обратно пропорциональным к числу 1,618. Если мы поделим элементы через один, то получим 2,618 и 0,382. Как вы уже поняли, они также являются обратно пропорциональными. Полученные числа называются коэффициентами Фибоначчи. А теперь объясним, для чего мы выполняли эти вычисления.

Золотое сечение

Все окружающие нас предметы мы различаем по определенным критериям. Один из них - форма. Какие-то нас привлекают больше, какие-то меньше, а некоторые и вовсе не нравятся. Замечено, что симметричный и пропорциональный объект гораздо легче воспринимается человеком и вызывает чувство гармонии и красоты. Цельный образ всегда включает в себя части различного размера, которые находятся в определенном соотношении друг с другом. Отсюда вытекает ответ на вопрос о том, что называют Золотым сечением. Данное понятие означает совершенство соотношений целого и частей в природе, науке, искусстве и т. д. С математической точки зрения рассмотрим следующий пример. Возьмем отрезок любой длины и разделим его на две части таким образом, чтобы меньшая часть относилась к большей как сумма (длина всего отрезка) к большей. Итак, примем отрезок с за величину один. Его часть а будет равна 0,618, вторая часть b , выходит, равна 0,382. Таким образом, мы соблюдаем условие Золотого сечения. Отношение отрезка c к a равняется 1,618. А отношение частей c и b - 2,618. Получаем уже известные нам коэффициенты Фибоначчи. По такому же принципу строятся золотой треугольник, золотой прямоугольник и золотой кубоид. Стоит также отметить, что пропорциональное соотношение частей тела человека близко к Золотому сечению.

Последовательность Фибоначчи - основа всего?

Попробуем объединить теорию Золотого сечения и известного ряда итальянского математика. Начнем с двух квадратов первого размера. Затем сверху добавим еще квадрат второго размера. Подрисуем рядом такую же фигуру с длиной стороны, равной сумме двух предыдущих сторон. Аналогичным образом рисуем квадрат пятого размера. И так можно продолжать до бесконечности, пока не надоест. Главное, чтобы величина стороны каждого последующего квадрата равнялась сумме величин сторон двух предыдущих. Получаем серию многоугольников, длина сторон которых является числами Фибоначчи. Эти фигуры называются прямоугольниками Фибоначчи. Проведем плавную линию через углы наших многоугольников и получим… спираль Архимеда! Увеличение шага данной фигуры, как известно, всегда равномерно. Если включить фантазию, то полученный рисунок можно проассоциировать с раковиной моллюска. Отсюда можем сделать вывод, что последовательность Фибоначи - это основа пропорциональных, гармоничных соотношений элементов в окружающем мире.

Математическая последовательность и мироздание

Если присмотреться, то спираль Архимеда (где-то явно, а где-то завуалированно) и, следовательно, принцип Фибоначчи прослеживаются во многих привычных природных элементах, окружающих человека. Например, все та же раковина моллюска, соцветия обычной брокколи, цветок подсолнечника, шишка хвойного растения и тому подобное. Если заглянем подальше, то увидим последовательность Фибоначчи в бесконечных галактиках. Даже человек, вдохновляясь от природы и перенимая ее формы, создает предметы, в которых прослеживается вышеупомянутый ряд. Тут самое время вспомнить и о Золотом сечении. Наряду с закономерностью Фибоначчи прослеживаются принципы данной теории. Существует версия, что последовательность Фибоначчи - это своего рода проба природы адаптироваться к более совершенной и фундаментальной логарифмической последовательности Золотого сечения, которая практически идентична, но не имеет своего начала и бесконечна. Закономерность природы такова, что она должна иметь свою точку отсчета, от чего отталкиваться для создания чего-то нового. Отношение первых элементов ряда Фибоначчи далеки от принципов Золотого сечения. Однако чем дальше мы его продолжаем, тем больше это несоответствие сглаживается. Для определения последовательности необходимо знать три его элемента, которые идут друг за другом. Для Золотой последовательности же достаточно и двух. Так как она является одновременно арифметической и геометрической прогрессией.

Заключение

Все-таки, исходя из вышесказанного, можно задать вполне логичные вопросы: "Откуда появились эти числа? Кто этот автор устройства всего мира, попытавшийся сделать его идеальным? Было ли всегда все так, как он хотел? Если да, то почему возник сбой? Что будет дальше?" Находя ответ на один вопрос, получаешь следующий. Разгадал его - появляются еще два. Решив их, получаешь еще три. Разобравшись с ними, получишь пять нерешенных. Затем восемь, далее тринадцать, двадцать один, тридцать четыре, пятьдесят пять…

Однако, это не все, что можно сделать с золотым сечением. Если единицу разделить на 0,618 то получается 1,618, если возведем в квадрат, то у нас получится 2,618, если возведем в куб, то получим число 4,236. Это коэффициенты расширения Фибоначчи. Тут не хватает только числа 3,236, которое было предложено Джоном Мёрфи.


Что думают о последовательности специалисты

Кто-то скажет, что эти числа уже знакомы, потому что они используются в программах технического анализа, для определения величины коррекции и расширения. Кроме того эти же ряды играют важную роль в волновой теории Элиота. Они являются его числовой основой.

Наш эксперт Николай Проверенный портфельный менеджер инвестиционной компании Восток.

  • — Николай, как вы думаете, случайно ли появление чисел Фибоначчи и его производных на графиках различных инструментов? И можно ли сказать: «Ряд Фибоначчи практическое применение» имеет место?
  • — К мистике отношусь плохо. А на графиках биржи тем более. У всего есть свои причины. в книге «Уровни Фибоначчи» красиво рассказывал, где появляется золотое сечение, что не стал удивляться тому, что оно появилось на графиках котировок биржи. А зря! Во многих примерах, которые он привел, часто появляется число Пи. Но его почему-то нет в ценовых соотношениях.
  • — То есть вы не верите в действенность волнового принципа Элиота?
  • — Да нет же, не в этом дело. Волновой принцип – это одно. Численное соотношение – это другое. А причины их появления на ценовых графиках – третье
  • — Каковы на ваш взгляд причины появления золотого сечения на биржевых графиках?
  • — Правильный ответ на этот вопрос может быть в силах заслужить Нобелевскую премию по экономике. Пока мы можем догадываться об истинных причинах. Они явно не в гармонии природы. Моделей биржевого ценообразования много. Они не объясняют обозначенный феномен. Но не понимание природы явления не должно отрицать явление как таковое.
  • — А если когда – либо этот закон будет открыт, то сможет ли это разрушить биржевой процесс?
  • — Как показывает та же теория волн закон изменения биржевых цен – это чистая психология. Мне кажется, знание данного закона ничего не изменит и не сможет разрушить биржу.

Материал предоставлен блогом веб-мастера Максима.

Совпадения основ принципов математики в самых разных теориях кажется невероятным. Может быть это фантастика или подгонка под конечный результат. Поживем — увидим. Многое из того, что раньше считалось необычным или было не возможно: освоение космоса, например, стало привычным и никого не удивляет. Также и волновая теория, может быть непонятная, со временем станет доступней и понятней. То, что раньше было не нужным, в руках аналитика с опытом станет мощным инструментом прогнозирования дальнейшего поведения .

Числа Фибоначчи в природе.

Смотреть

А теперь, давайте поговорим о том, как можно опровергнуть то, что цифровой ряд Фибоначчи причастен к каким-либо закономерностям в природе.

Возьмем любые другие два числа и выстроим последовательность с той же логикой, что и числа Фибоначчи. То есть, следующий член последовательности равен сумме двух предыдущих. Для примера возьмем два числа: 6 и 51. Теперь выстроим последовательность, которую завершим двумя числами 1860 и 3009. Заметим, что при делении этих чисел, мы получаем число близкое золотому сечению.

При этом числа, которые получались при делении других пар уменьшались от первых к последним, что позволяет утверждать, что если этот ряд продолжать бесконечно, то мы получим число равное золотому сечению.

Таким образом, числа Фибоначчи ни чем сами по себе не выделяются. Существует другие последовательности чисел, которых бесконечное множество, что дают в результате тех же операций золотое число фи.

Фибоначчи не был эзотериком. Он не хотел вложить никой мистики в числа, он просто решал обыкновенную задачу о кроликах. И написал последовательность чисел, которые вытекали из его задачи, в первый, второй и другие месяца, сколько будет кроликов после размножения. В течение года он получил ту самую последовательность. И не делал отношений. Никакой золотой пропорции, Божественном отношении речи не шло. Все это было придумано после него в эпоху Возрождения.

Перед математикой достоинства Фибоначчи огромны. Он от арабов перенял систему чисел и доказал её справедливость. Была тяжелая и долгая борьба. От римской системы счисления: тяжелой и неудобной для счета. Она исчезла после французской революции. Никакого отношения именно к золотому сечению Фибоначчи не имеет.

Спиралей бесконечно много, наиболее популярны: спираль натурального логарифма, спираль Архимеда, гиперболическая спираль.

А теперь давайте взглянем на спираль Фибоначчи. Данный кусочно-составной агрегат складывается из нескольких четвертей окружностей. И не является спиралью, как таковой.

Вывод

Как бы долго мы не искали подтверждение или опровержение применимости ряда Фибоначчи на бирже, такая практика существует.

Огромные массы людей действуют согласно линейке Фибоначчи, которая находится во многих пользовательских терминалах. Поэтому хотим мы или нет: числа Фибоначчи оказывают влияние на , а мы можем воспользоваться этим влиянием.

В обязательном порядке читаем статью — .

Похожие публикации