Геологическое летоисчисление. Основные этапы геологической истории Земли. Конспект урока по географии на тему "Геологическое летоисчисление и геологическая карта" (8 класс)

Тема: Геологическое летоисчисление и геологическая карта».

Цели урока:

    повторить основные понятия темы: “Литосфера и рельеф”,

    познакомить с науками, изучающими земную кору. Сформировать представление о геохронологической таблице, дать знания о геологическом летоисчислении.

    рассмотреть биологическую эволюцию жизни на Земле, не углубляя данного вопроса, -развивать умения учащихся устанавливать причинно- следственные связи;

    продолжить формирование представлений о меж предметных связях;

    способствовать познавательной активности учащихся и интереса к изучаемым предметам при помощи новых информационных технологий.

Оборудование: компьютер, проектор, коллекция полезных ископаемых, физическая карта России, геохронологическая таблица, тектоническая карта России.

Ход урока:

I. Организационный момент.

II. Историческая справка.

Учитель. Современный рельеф планеты – это результат длительного геологического развития и влияния современных рельефообразующих процессов: внутренних (эндогенных) и внешних (экзогенных), в том числе и человека. Для понимания различий современного рельефа надо знать геологическую историю его формирования. Строение и историю развития Земли по расположению горных пород изучает наука - геология . Многие годы геологи, изучая горные породы, пытались определить возраст Земли. Но еще недавно они были далеки от успеха. В начале 17 века архиепископ Армы Джеймс Ашер вычислил дату сотворения мира по Библии, и определил ее как 4004 г. до н. э. Но он ошибался более чем в миллион раз. Сегодня ученые считают, что возраст Земли – 4600 миллионов лет. Он приблизительно равен возрасту Солнца и других планет.

Геология делится на отрасли:

Историческая геология – изучает закономерности строения земной коры в течении геологического времени.

Геотектоника – учение о строении земной коры и формировании тектонических структур (складки, сбросы, трещины итд.)

Палеонтология – это наука о вымерших организмах, которые изучают, по окаменелостям, сохранившемся твердым скелетам итд.

Минералогия – наука, изучающая минералы.

Петрография – наука, изучающая горные породы. Геохронология изучает возраст, продолжительность, последовательность формирования горных пород.

Геохронологический метод – основан на изучении последовательности расположения осадочных пород.

Что называют осадочными горными породами?
– Объясните механизм образования осадочных пород (
под воздействием погодных условий горные породы разрушаются, реки несут их обломки в озёра и моря, где из накапливающихся отложений образуются осадочные горные породы )
– Приведите примеры. (Показать образцы)

III. Объяснение нового материала.

Учитель. При изучении возраста Земли составили календарь Земли. История Земли разделена на длительные промежутки времени – эры. Эры делятся на периоды , периоды на эпохи , эпохи – на века . (Запись в тетрадь)
Названия эр греческого происхождения:
архейская – древнейшая, протерозойская – ранняя, палеозойская – древняя, мезозойская- средняя, кайнозойская – новая. На основе определения геологического возраста горных пород учёные составляют геохронологические таблицы. Чтение таких таблиц начинают снизу по мере залегания горных пород. На нашем уроке мы составим таблицу, в которую занесем главнейшие геологические события, полезные ископаемые, проследим основные этапы развития жизни, этапы химической эволюции. (Заполнение таблицы в процессе изучения нового материала)

Учитель. Протопланетный этап – возникновение Вселенной. Любой электрон попытавшийся приблизиться к высокоэнергетическому протону, тут же отбрасывался в результате столкновения с ним. Но время работало против излучения. Расширение остужало Вселенную и протоны постепенно теряли свою энергию, поскольку им приходилось заполнять всё больше пространство. Спустя примерно миллион лет температура упала до 4000 С, что уже позволило ядрам удерживать электроны на орбитах. Именно на этой стадии развития Вселенной образовались атомы. В течение несколько тысяч лет электроны устроились на орбитах вокруг ядер водорода. Планета Земля формировалась из сгустков пыли, газа и более твёрдых частиц. Часто в этот сгусток попадали метеориты, которые повышали температуру юной планеты. Постепенно рой метеоритов рассеялся, и наступила эпоха вулканизма. Лава, извергаемая вулканами застывала, и формировался первичный облик Земли.

Учитель. Докембрийский период . В геологии в этот период образуется первичная земная кора, которая разрастается в процессе вулканизма и осадочных пород. Так образовались крупные платформы. Жизнь в докембрийский период стала геологическим фактором – живые организмы меняли форму и состав земной коры, формировали её верхний слой – биосферу.

Вопросы.

Назовите и покажите их по карте.
– Чему соответствуют они в рельефе?
(Русская и Западно-Сибирская равнины)

Фундаменты платформ сложены магматическими и метаморфическими породами.

Какие породы называют магматическими и метаморфическими? Приведите примеры. (Гнейсы, граниты, кварциты - показ минералов из коллекции)

В Докембрийский период образуются складчатые области на юге Сибирской платформы.

Что называют складчатыми областями?
– Как они образуются?

Чему они соответствуют в рельефе? Назовите их и покажите на карте. (Горы Прибайкалья и Забайкалья)

Для полезных ископаемых докембрия характерна высокая рудоносность (магнитный железняк, красный железняк, медный колчедан, свинцовый блеск – показ минералов).

Учитель. Палеозойская эра . В палеозойскую эру, в результате столкновения литосферных плит, образовались горы суши. С самого своего возникновения животные находятся в зависимости от растений, которые снабжают их кислородом и стоят в основании пищевой пирамиды. Расскажите о животных и растениях, которые зарождались в Палеозойскую эру.

Определите по карте какие горы образовались в этот период? (Уральские горы, Алтай, Западные и Восточные Саяны) . В результате изобилия растительности и животного мира в этот период образовываются нефть, уголь, соли. Угли карбона и Перми составляют 40% запасов углей Земли.

Показ минералов.

Учитель. Мезозойская эра. По тектонической карте определите территории, образование которых проходило в мезозойскую эру? (Горы Сихотэ-Алинь; хребты Черского и Верхоянский). Это эра пресмыкающихся и голосеменных растений. Пресмыкающиеся животные заселили всю сушу, море, некоторые приспособились к полету. Полными “хозяевами” суши стали динозавры.

Назовите полезные ископаемые мезозойской эры. (Золото, цинк, мышьяк, серебро, олово, вольфрам и другие)
Эти полезные ископаемые возникли в результате активных тектонических движений. В настоящее время разнообразие рельефа этих территорий является результатом геологической истории.
Часть океанической плиты опустилась, а отдельные блоки поднялись, впоследствии образовались платформы. В условиях теплого и влажного климата, высокой биомассы сформировались залежи углей. Самый крупный Зырянский каменноугольный бассейн мощность пластов 700-800 метров
(показ по карте).

Учитель. Кайнозойская эра. С началом кайнозойской эры материки Лавразия и Гондвана стали “расползаться”, образуя новые материки. При этом происходило перемещение литосферных плит и их столкновение друг с другом. Так образовывались складки, т.е. горные хребты.

В кайнозойскую эру на территории России складчатость происходила в пределах Альпийско-Гималайского и Тихоокеанского поясов. Это соответствует Северному Кавказу (рис. 67, 68), где горы растут, о чем свидетельствует вулканизм и землетрясения. Здесь проходит граница столкновения Евразийской и Африкано-Аравийской литосферных плит. Тихоокеанскому поясу соответствуют Курилы и Камчатка (рис. 69,70). Здесь продолжается закладка материковой земной коры, поэтому наблюдают землетрясения, гейзеры, вулканизм.

Вопросы:

Покажите по карте Курильские острова и полуостров Камчатка.
– Назовите самый большой вулкан России.
– Покажите Кавказские горы и самую высокую вершину России.

Среди полезных ископаемых выделяют фосфориты, бурые угли, бокситы, алмазы, драгоценные камни.

В четвертичный период наступает оледенение. В этот период наблюдается чередование повышения и понижения температур. В России насчитывают 3 оледенения: Окское, Днепровское, Валдайское. Последняя послеледниковая эпоха длится 10 тысяч лет. Кайнозой – эра расцвета цветковых растений, птиц и млекопитающих.

Закрепление.

    Наука, изучающая строение и историю развития Земли, называется…(геология ).

    Учение о строении земной коры и движениях ее называется - … (геотектоника )

    Раздел геологии, который занимается изучением возраста, продолжительности и последовательности образования горных пород …(геохронология )

    Самые длительные отрезки времени в геологической истории Земли – это …(эры )

    Самая древняя эра - …(архейская )

    Мы живем в эру новой жизни …(кайнозойскую )

    Таблица, содержащая сведения о последовательной смене эр и периодов, важнейших геологических событиях, этапах развития жизни, называется …(геохронологическая )

    По таблице найдите период, в который произошло древнее оледенение (четвертичный или антропогеновый )

    Самое древнее горообразование называется (байкальская складчатость )

    Самые молодые горы образовались в …(альпийскую ) складчатость.

Итоги урока.

Какие этапы развития Земли мы с вами определили?
– Как менялся облик Земля на протяжении 4,6 миллионов лет?
– Какие процессы формировали облик Земли?
– Что происходило с живыми организмами в это время?
– Каковы ваши впечатления о развитии жизни на Земле?

Домашнее задание: п. 11, закончить таблицу, и выучить ее.

Геологические источники информации

Геологическая информация предполагает:

  1. Сведения о месторождениях полезных ископаемых;
  2. Сведения об их запасах;
  3. Сведения об условиях залегания и путях использования полезных ископаемых;
  4. Первичный фактический материал – образцы проб керна;
  5. Данные измерений над геологическими объектами;
  6. Аналитические материалы в виде таблиц, графиков, карт, отчетов и др.
  7. Затраты на геологическую разведку полезных ископаемых.

Одним из более доступных источников геологической информации является геологическая карта.

Определение 1

Геологическая карта – это графическое изображение геологического строения какого-либо участка земной коры или в целом земного шара с помощью специальных условных знаков.

На геологических картах показывается распространение выходов горных пород на земной поверхности, которые различаются возрастом, происхождением, составом и условиями залегания. Геологическая карта дает возможность делать вывод о формировании земной коры и закономерностях распространения полезных ископаемых на территории. Создать геологическую карту можно по результатам геологической съемки, практического опыта, теоретического обобщения научных геологических достижений.

  1. Собственно геологические карты;
  2. Карты четвертичных отложений;
  3. Геоморфологические карты;
  4. Карты полезных ископаемых;
  5. Прогнозные карты.

Собственно геологические карты по содержанию относятся к стратиграфическим картам до четвертичных пород. Они не показывают континентальные отложения. Исключением может быть большая мощность отложений или неизвестность подстилающих пород. Специальные условные знаки этой карты показывают возраст, состав, происхождение горных пород, условия их залегания и характер границ между ними.

Карты четвертичных отложений . На них идет разделение четвертичных горных пород по генезису, возрасту и составу. Карты показывают границы стадий оледенения, морские трансгрессии и регрессии, границы распространения многолетнемерзлых горных пород.

Литологические карты показывают состав и условия залегания тех пород, которые на поверхности обнажены или скрыты под четвертичными отложениями.

Геоморфологические карты отображают основные типы рельефа и его отдельные элементы. При этом учитывается их возраст и происхождение.

Тектонические карты показывают время, условия образования и формы залегания основных структурных элементов земной коры;

Гидрогеологические карты дают информацию о водоносных горизонтах, условиях их залегания, распространения, состава, режима подземных вод.

Инженерно-геологические карты дают информацию о физико-механических свойствах горных пород и современных геодинамических явлениях.

Карты полезных ископаемых отражают все сведения о месторождениях полезных ископаемых.

Прогнозные карты информируют о закономерностях размещения известных месторождений полезных ископаемых и указывают перспективные площади разных видов минерального сырья.

В зависимости от масштаба карты бывают:

  1. Обзорные карты с геологией больших территорий – государств, материков;
  2. Карты мелкого масштаба – показывают геологическое строение крупных регионов или государств;
  3. Карты среднего масштаба отражают черты геологии отдельных территорий, например, геология Урала, Кавказа и др.

Относительное летоисчисление

Геологические события в хронологической последовательности представлены в единой международной геохронологической шкале или таблице. Таблица показывает последовательную смену и продолжительность эр и периодов в развитии земной коры и природы.

Выделяют пять эр:

  1. Архейская эра – $1800$ млн. лет. Время примитивных бактерий и водорослей;
  2. Протерозойская эра – $2000$ млн. лет. Время появления первых многоклеточных;
  3. Палеозойская эра – $330$ млн. лет.
  4. Мезозойская эра – $165$ млн. лет;
  5. Кайнозойская эра – $70$ млн. лет.

Определение 2

Геологическая эра – это этап развития земной коры, соответствующий длительному этапу развития земной коры и органического мира.

Начиная с палеозоя эры, делятся на более короткие временные отрезки, получившие название периодов. Периодов $12$. В последний ещё не закончившийся четвертичный период кайнозойской эры живет современный человек.

В палеозойской эре выделяют 6 периодов:

  1. Кембрий – расцвет морских беспозвоночных;
  2. Ордовик – появление первых беспозвоночных;
  3. Силур – появление первых наземных растений;
  4. Девон – появление земноводных и рыб;
  5. Карбон – господство папоротников хвощей, расцвет земноводных;
  6. Пермь – появление голосеменных растений.

Мезозой включает 3 периода:

  1. Триас – расцвет голосеменных растений, появление первых млекопитающих;
  2. Юра – появление примитивных птиц;
  3. Мел – вымирание рептилий, развитие птиц и млекопитающих.

Кайнозой включает три периода:

  1. Палеоген – появление цветковых;
  2. Неоген – широкое распространение птиц, млекопитающих и цветковых растений;
  3. Антропоген – появление человека.

Геологические события часто определяются отношением одних временных единиц к другим. Такое деление истории Земли получило название относительная геохронология . В основе относительной геохронологии лежит стратиграфический анализ, позволяющий сопоставить и проследить отдельные слои, сходные по составу породы – это литостратиграфия.

Определение 3

Литостратиграфия – это метод расчленения, выделения условных временных отрезков.

В $1669$ г. Николаусом Стено был установлен закон последовательности напластования. Ученый определил, что нижние пласты осадочных горных пород являются более древними, потому что образовались раньше вышележащих. Таким образом, уже в $XVII$ веке появилась возможность установления относительной последовательности образования слоев, а это значит и тех событий, которые были с ними связаны. В результате исчезновения группы слоёв последовательность напластований может быть нарушена – это есть стратиграфический перерыв и на разрезах он обозначается волнистой чертой. Принцип Стено важный, но, как считают специалисты, имеет ряд ограничений. Принцип подходит для тех территорий, у которых тектоническое состояние спокойное и осадочные образования залегают горизонтально. В этом случае слои, расположенные выше, будут моложе по сравнению с нижележащими слоями. Если же тектонические движения смяли горные породы в складки, и они перемешались, то принцип Стено не подходит – последовательность слоёв нарушается. Если такие случаи возникают, на помощь приходит палеонтология. В горных породах остаются остатки органической жизни, по которым палеонтологи дают своё заключение о возрасте породы. Они используют принцип эволюции органического мира – от простейших к более сложным формам. Этот палеонтологический метод определения относительного возраста и последовательности залегания горных пород в относительной геохронологии является основным.

Абсолютное летоисчисление

Определение 4

Когда возраст горных пород определяется в годах – это уже будет абсолютное летоисчисление.

Абсолютное летоисчисление имеет две группы методов:

  1. Скорость осадконакопления или сезонно-климатический метод. Геологические и биологические процессы связаны с сезонными изменениями климата, например, деревья имеют годичные кольца, по количеству которых можно определить их возраст. О возрасте коралловой постройки по годичным слойкам роста. Кольца деревьев и кораллов в окаменевшем виде не повреждаются и доходят до внимания ученых. Обнаружить годичные кольца можно и в осадочных горных породах, которые отложились в поймах, дельтах рек, в озерных отложениях. В этих породах образуется два слоя – весенний песчаный слой и зимний глинистый слой. Зимой принос грубообломочного материала прекращается и оседает глинистая муть, поэтому ежегодно образуется два тонких слоя – песчаный и глинистый. Для точности абсолютного летоисчисления важно, чтобы осадконакопление шло непрерывно и ритмику процессов ничего не нарушало. Кроме всего, подсчет возраста имеет свои ограничения – это десятки тысяч лет, но не миллионы;
  2. Второй метод – скорость радиоактивного распада элементов . Идея была высказана в $1902$ г П. Кюри на основании того, что кристаллическая решетка многих минералов включает в себя радиоактивные изотопы в малых количествах. Образование минерала сопровождается накоплением продуктов естественного распада изотопов. Распад изотопов происходит с постоянной скоростью и никакие факторы не могут её изменить. Первым опробованным методом был уран-свинцовый, затем появился свинцово-изотопный, калий-аргоновый, рубидий-стронциевый, самарий-неодимовый, радиоуглеродный метод. В верхних слоях атмосферы из азота образуется радиоуглерод, который распадается с периодом полураспада $5570$ лет. Используют метод для определения возраста древесины, древесного угля, торфа, углесодержащих организмов. На основании радиологических методов определена продолжительность всех геологических эр и периодов, время их начала и конца.

Под термином геологических источников информации понимаются материальные образцы и сведения, позволяющие оценить исторические данные и составить подробный геологический план. К источникам информации относят:

  • Карты ископаемых – в них содержится подробная информация о локализации месторождений, существующих закономерностях и перспективных для разработки участков. Все геологические карты имеют масштаб, в зависимости от величины которого выделяют: обзорные территориальные карты, отражающие информацию о материках, государствах и пр.;

Среднемасштабные карты – фиксируют территориальные характеристики отдельных участков, например, Алтая, Кавказа и т.д.; карты малого масштаба – региональные данные или геологические сведения малых государств.

Относительное летоисчисление

  • В палеозое:
  • 2. Ордовик – позвоночные;

    3. Силур – наземные растения;

  • В мезозое:
  • 2. Юра – первые птицы;

  • В кайнозое:
  • 1. Палеоген – первые цветы;

    Абсолютное летоисчисление

    Годичные кольца обнаруживаются в породе, сформированной осадками. На исследуемых участках рассматриваются сезонные отложения. В летний период осадочный слой сформирован песчаником и имеет большую толщину. Зимой, когда движение породы менее интенсивное, оседает ил и глина. Возраст слоя определяется по количеству глинистых и песчаных слоев. Для получения точных данных, при использовании осадочного метода, процессу накопления породы ничего не должно мешать. В случае нарушения ритмики и прерывания процесса, данные могут быть искажены. Еще одним ограничением данного метода является период изучения, невозможно определить возраст породы старше нескольких десятков тысячелетий.

    Метод радиационного датирования основан на учете скорости распада радиоизотопов внутри породы. Идея использования радиационного фона в качестве инструмента геологии была предложена П. Кюри в 1902 году. Преимуществом методики является факт постоянства скорости распада радиоактивных частиц, на которую не влияют климатические или иные факторы. По сути метод радиационного датирования состоит из множества методов, в частности: уран-свинцового, рубидий-стронциевого, калий-аргонового, свинцово-изотопного, самарий-неодимового, радиоуглеродного. В основе методики лежат естественные физические процессы, обуславливающие преобразование атмосферного азота в радиоактивный осадок с периодом распада в 5,57 тысяч лет.

    Метод применяется для датировки торфа, древесины и прочих углеродосодержащих композиций. На основании методики была выявлена продолжительность каждой из существующих эр, а также определены границы периодов, входящих в их состав. Геологические источники информации Под термином геологических источников информации понимаются материальные образцы и сведения, позволяющие оценить исторические данные и составить подробный геологический план. К источникам информации относят:

    • Данные о залежах полезных ископаемых – их объем, локализация, условия залегания и способы добычи;
    • Фактический материал – пробы грунта и т.д.;
    • Отчеты об измерениях над геологическими объектами;
    • Таблицы, отчеты, графики, карты и прочий аналитический материал;
    • Сведения о затратах на разведку и добычу ископаемых.

    Наиболее доступными источником получения рассматриваемой информации считаются геологические карты.

    Геологическая карта – графический комплекс данных отражающий характеристики и строение в границах определенной зоны или в планетарном масштабе. Данные отраженные в карте имеют свои условные обозначения и наносятся при помощи специальных символов. Геологическая карта отражает информацию о возрасте, размерах, составе и условиях нахождения на поверхности Земли, выходов горной породы.

    На основании геологических карт могут строиться выводы о закономерностях накопления и распространения полезных ископаемых, как на отдельно взятой территории, так и на всей планете. Информация, содержащаяся в карте, дает возможность оценить и проследить этапы формирования коры земли.

    Для создания карт применяются данные, полученные во время геологоразведочных экспедиций, при анализе теоретического материала и т.д. В зависимости от назначения и содержания карт, выделяются следующие их виды:

    • Стратиграфические собственно-геологические карты – затрагивают период до четвертичных пород. В материалах не раскрывается информация касательно континентальных отложений, исключением может являться их значительная мощность или не изученность пород подстилающего типа. На карте символически отображается происхождение, состав, возраст, условия залегания и особенности разграничения;
    • Карты четвертичных отложений – отображаются, разделенные по возрасту, составу и генезису, горные породы четвертичного периода. Изучая материал можно увидеть этапы оледенения, локализацию и распространение ледниковых пород, морские регрессии и трансгрессии;
    • Карты литографии – отражают информацию об условиях залегания и составе поверхностных обнажений или пород расположенных ниже четвертичного уровня;
    • Карты геоморфологии – информируют об основных типах рельефа или отдельных элементах с учетом происхождения и возраста;
    • Карты тектоники – показывают формы, условия и время образования структурных компонентов коры Земли;
    • Гидрогеологическая карта – раскрывает информацию о составе и режимах подземных резервуаров, водоносных горизонтах, условиях залегания вод;
    • Инженерно-геологические карты – показывают свойства горных пород и явлений геодинамики;
    • Карты ископаемых – в них содержится подробная информация о локализации месторождений, существующих закономерностях и перспективных для разработки участков.

    Все геологические карты имеют масштаб, в зависимости от величины которого выделяют: обзорные территориальные карты, отражающие информацию о материках, государствах и пр.; Среднемасштабные карты – фиксируют территориальные характеристики отдельных участков, например, Алтая, Кавказа и т.д.; карты малого масштаба – региональные данные или геологические сведения малых государств.

    Относительное летоисчисление

    Хронологическая последовательность геологических событий нашла отражение в единой, систематизированной и признанной международным сообществом геохронологической таблице или шкале. Данный материал показывает длительность периодов развития и продолжительность эр, а также их последовательность.

    Согласно шкале, выделяется пять эр, это: архей – 1800 млн (бактерии, водоросли); протерозой – 2000 млн (первые многоклеточные); Палеозой – 330 млн; Мезозой – 165 млн; Кайнозой – 70 млн.

    Геологической эрой определяют один из этапов жизни и развития органического мира и земной коры. Эры, начиная с палеозоя, получили разделение на периоды. Всего существует 12 периодов:

    • В палеозое:

      1. Кембрийский –беспозвоночные обитатели моря;

      2. Ордовик – позвоночные;

      3. Силур – наземные растения;

      4. Девон – рыбы и земноводные;

      5. Карбон – земноводные, папоротники;

    • В мезозое:
    • 1. Триас – первые млекопитающие;

      2. Юра – первые птицы;

      3. Мел – гибель крупных рептилий, доминирование птиц и млекопитающих.

    • В кайнозое:
    • 1. Палеоген – первые цветы;

      2. Неоген - развитие и широкое распространение цветов, млекопитающих и птиц;

      3. Антропоген – зарождение и развитие человека.

    Отношение разных временных единиц, при рассмотрении геологических событий, обозначается термином относительной геохронологии. В основе методики лежит литостратиграфия – стратиграфический анализ, основанный на сопоставлении слоев близких по составу и характеристикам.

    Литостратиграфия – методика выделения, расчленения условных отрезков времени. Возможность прослеживать и оценивать относительную последовательность образование наложений и сопоставлять связанные события, появилась в 17-м столетии. Закон подтверждающий существование последовательности был сформулирован Николаусом Стено в 1669 году. Именно он определил взаимосвязь глубины залегания породы и ее возраста. Также был выявлен стратиграфического перерыва – нарушение последовательности напластований.

    Несмотря на признанную важность закона Стено, данный принцип ограничен рядом особенностей. Принцип актуален для регионов с низкой тектонической активностью, с характерным горизонтальным образованием слоев. При смятии слоев в результате тектонических явлений и их перемешивании, данные полученные методом Стено будут неточными. В данном случае используют палеонтологические методы исследующие окаменелости и определяющие возраст породы по остаткам биологического материала. Эволюционный анализ позволяет определить относительный возраст более точно и используется в качестве основного.

    Абсолютное летоисчисление

    Абсолютным летоисчислением называется методика, позволяющая устанавливать возраст породы с точностью до нескольких лет.

    Данный тип летоисчисления оперирует двумя разновидностями методов: осадочный радиологический.

    В первом случае учитывается скорость накопления осадков, метод имеет другое название – сезонно-климатический. Все живое на Земле имеет естественные механизмы фиксации периодов жизни, яркий пример годичные кольца деревьев. Образования, зависящие от изменения климата и течения времени, позволяют определить возраст исследуемого объекта.

    Годичные кольца обнаруживаются в породе, сформированной осадками. На исследуемых участках рассматриваются сезонные отложения. В летний период осадочный слой сформирован песчаником и имеет большую толщину. Зимой, когда движение породы менее интенсивное, оседает ил и глина. Возраст слоя определяется по количеству глинистых и песчаных слоев.

    Для получения точных данных, при использовании осадочного метода, процессу накопления породы ничего не должно мешать. В случае нарушения ритмики и прерывания процесса, данные могут быть искажены. Еще одним ограничением данного метода является период изучения, невозможно определить возраст породы старше нескольких десятков тысячелетий.

    Метод радиационного датирования основан на учете скорости распада радиоизотопов внутри породы. Идея использования радиационного фона в качестве инструмента геологии была предложена П. Кюри в 1902 году. Преимуществом методики является факт постоянства скорости распада радиоактивных частиц, на которую не влияют климатические или иные факторы.

    По сути метод радиационного датирования состоит из множества методов, в частности: уран-свинцового, рубидий-стронциевого, калий-аргонового, свинцово-изотопного, самарий-неодимового, радиоуглеродного. В основе методики лежат естественные физические процессы, обуславливающие преобразование атмосферного азота в радиоактивный осадок с периодом распада в 5,57 тысяч лет.

    Метод применяется для датировки торфа, древесины и прочих углеродосодержащих композиций. На основании методики была выявлена продолжительность каждой из существующих эр, а также определены границы периодов, входящих в их состав.

    План лекции.

    7.1. Основные этапы эволюции Земли.

    7.2. Относительный возраст горных пород и методы его определения.

    7.3. Понятие об абсолютном возрасте горных пород.

    7.1. Основные этапы эволюции Земли

    Всю историю Земли можно подразделить на два этапа: догеологический и геологический.

    ДОГЕОЛОГИЧЕСКИЙ ЭТАП (космический, планетарный) охватывает промежуток времени от момента возникновения Земли как планеты до начала формирования земной коры. Его история не может быть восстановлена геологическими методами, и наши знания о нем основываются на общих представлениях о развитии Земли как одной из планет Солнечной системы. Главным содержанием догеологической эволюции Земли явилось расслоение ее вещества на оболочки-геосферы, завершившиеся образованием атмосферы и гидросферы. Данный процесс протекал параллельно с прогрессивным уплотнением родоначального сгущения.

    Разогрев, следовавший за уплотнением, усиленный радиоактивными процессами, способствовал и ускорял процесс расслоения вещества Земли.

    Легкие газы были рассеяны в мировом пространстве. Однако некоторые газы и летучие вещества были захвачены мантией Земли и затем "выжаты" к поверхности под действием возрастающих температур и давлений. Удаление этих веществ привело к образованию атмосферы.

    В составе первичной атмосферы Земли преобладали углекислый газ и пары воды, поэтому она была непроницаема для солнечных лучей. Разогрев земной поверхности происходил за счет внутренней теплоты, регенируемой в процессе сжатия, гравитационной дифференциации вещества и радиоактивного распада. За счет внутренней теплоты поддерживалась изотермическая обстановка в нижних слоях атмосферы. Поэтому не могли иметь места гидрометеорологические процессы в современном смысле.

    ГЕОЛОГИЧЕСКИЙ ЭТАП охватывает отрезок от начала формирования земной коры до настоящего времени, когда на планете проявляются две основные группы процессов - эндогенные и экзогенные.

    С появлением экзогенных процессов поверхность Земли становится ареной развития процессов разрушения, транспортировки продуктов разрушения и формирования толщ осадочных горных пород. Единство, в котором действуют экзогенные и эндогенные процессы, делает возможным последующие превращения осадочных пород, т.е. явления метаморфизма, магмообразования, вулканизма, что постепенно и постоянно усложняет строение земной коры. В результате формируется сложнопостроенная неоднородная по составу земная кора современного облика.

    Сложный процесс развития земной коры реконструируется на основе изучения сохранившихся от этого процесса геологических документов: вещество земной коры, т.е. минералов и горных пород; геологических тел, структурных форм различного порядка; остатков животных и растительных организмов, захороненных в земной коре.

    Для того чтобы разобраться в сложных сочетаниях горных пород, извлечь из этого практически важные сведения, необходимо уметь определять последовательность образования слагающих земную кору геологических объектов - горных пород.

    7.2. Относительный возраст горных пород и методы его определения

    ОТНОСИТЕЛЬНЫЙ ВОЗРАСТ устанавливает последовательность геологических образований, в частности горных пород, в ходе геологической истории. Среда методов определения относительного возраста выделяют геологостратиграфические и биостратиграфические. К первой группе принадлежат стратиграфический и минералого-петрографический методы.

    СТРАТИГРАФИЧЕСКИЙ МЕТОД основан на изучении последовательности напластования осадочных пород. Основное его правило заключается в том, что в ненарушенных толщах горных пород перекрывающие слои всегда моложе подстилающих. Если в геологических разрезах встречаются секущие тела магматических пород, то действует правило: секущее тело моложе тех, которые оно пересекает.

    Главным недостатком этого метода является то, что с его помощью затруднительно сопоставлять удаленные друг от друга разрезы горных пород, а также породы, залегание которых осложнено тектоническими нарушениями.

    МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИЙ МЕТОД основан на определении относительного возраста отдельных слоев горных пород по характерным особенностям их состава и строения. Этот метод параллелизации слоев применим только в близко расположенных точках, и становится ненадежным в удаленных друг от друга геологических разрезах. Установлено, что часто горные породы одинакового возраста имеют разный состав и, наоборот, одновозрастные породы могут различаться по петрографическому составу, что указывает на различие в условиях их формирования. БИОСТРАТИГРАФИЧЕСКИЕ ПАЛЕОНТОЛОГИЧЕСКИЕ МЕТОДЫ основаны на изучении остатков органических форм, заключенных в осадочных породах в виде окаменелостей и отпечатков организмов, т.е. палеонтологических остатков, содержащихся в горных породах. Органическая жизнь в истории Земли развивалась постепенно - от простейших примитивных форм к более высокоорганизованным современным формам. Поэтому остатки организмов, захороненные в осадках в виде отпечатков и окаменелостей, могут служить надежным основанием для определения относительного возраста горных пород: горные породы, заключающие остатки наиболее примитивных организмов, будут древнее пород, содержащих остатки более высокоорганизованных растений и животных. Выяснено, что для пород определенного геологического возраста более характерны не отдельные окаменелости и отпечатки, а особые группы органических остатков, соответствующие ассоциациям (биоценозам) организмов, сменяющих друг друга в геологическом времени. Ведущая роль принадлежит руководящим ископаемым. Для них характерно: 1)быстрая эволюция во времени и, следовательно, ограниченное вертикальное распространение в геологических разрезах; 2)широкое распространение по площади.

    Среди указанных методов важное значение имеют микропалеонтологический, основанный на изучении простейших микроорганизмов, И спорово - пыльцевой анализ, объектом изучения которого являются микроскопические растительные остатки: наружные оболочки спор и зерна цветочной пыльцы.

    Часто при определении возраста возникает необходимость применения комплекса методов, но даже и в этом случае в земной коре существуют толщи, возраст которых неустановлен.

    В ходе изучения истории земной коры была разработана периодизация ее истории, созданы единая для всего земного шара СТРАТИГРАФИЧЕСКАЯ и соответствующая ей ГЕОХРОНОЛОГИЧЕСКАЯ ШКАЛА.

    Стратиграфические и соответствующие им геохронологические подразделения следующие:

    СТРАТИГРАФИЧЕСКИЕ ГЕОХРОНОЛОГИЧЕСКИЕ

    Эонотема Эон

    Группа (эратема) Эра

    Система Период

    Отдел Эпоха

    Стратиграфические подразделения применяются для обозначения комплексов слоев горных пород, а геохронологическая - для обозначения времени, в течение которого эти- комплексы накопились.

    ЭОНОТЕМИ - наиболее крупные стратиграфические подразделения, образование которых происходило в течение нескольких геологических эр. Выделяют две эонотемы: фанерозойскую (греч. «фанерос» - явный, «зоэ» - жизнь), объединяющий палеозойскую, мезозойскую и кайнозойскую группы, и криптозойскую (греч. «криптос» -скрытый), объединяющий протерозойскую и архейскую группы.

    ГРУППЫ - крупные подразделения стратиграфической шкалы - это комплексы отложений, образовавшихся в течение одной эры. Они охватывают крупные эры развития земной коры. Это нашло в названиях групп: архейская («археос»-древнейший), протерозойская («протерос»-первичный), палеозойская («палеос»-древний), мезозойская («мезос»-средний), кайнозойская («кайнос»-новый).

    Группы делятся на системы , объединяющие отложения, образовавшиеся в течение одного периода. Названия систем связаны с названием тех мест, где соответствующие отложения впервые были установлены и описаны. Например, девонская система названа по имени графства Девоншир в Англии, каменноугольная - по широкому распространению в ней отложений угля. Палеозойская группа состоит из шести систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная и пермская. В мезозойскую входят: триасовая, юрская и меловая. Кайнозойская состоит из палеогеновой, неогеновой и четвертичной систем. Архей и протерозой не имеют общепринятых подразделений для всей планеты. Обычно эти группы называют докембрием. Еще более дробными подразделениями являются ОТДЕЛЫ и ЯРУСЫ. Каждую систему подразделяют на три отдела: нижний, средний и верхний.

    Наряду с международной шкалой, используются вспомогательные подразделения - СЕРИИ, СВИТЫ, ПАЧКИ. На геологических картах породы различного возраста окрашиваются в соответствующие общепринятые цвета и обозначаются определенными индексами.

    7.3. Понятие об относительном возрасте горных пород

    Во многих случаях для решения вопросов теоретической и практической геологии необходимо установить АБСОЛЮТНЫЙ возраст пород, выраженный в обычных единицах времени.

    Исторически первыми для этих целей были применены ГЕОЛОГИЧЕСКИЕ методы, большинство из которых основано на изучении скорости геологических процессов. При этом полагается, что скорость процессов неизменна во времени. Например, был сделан подсчет возраста земной коры по суммарной мощности морских осадочных пород. При этом подсчете исходят из постулата постоянной скорости накопления осадков - 1 м в 7 тыс. лет.

    СОЛЕВОЙ метод основан на предположении, что все соли Мирового океана возникли за счет солей, приносимых водами с суши и ежегодный принос солей не менялся со временем. Геологические методы далеки от точности, и в силу многих допущений они являются ненадежными.

    Кардинальное решение вопроса определения абсолютного возраста пород стало возможным в XX в., в связи с использованием радиоактивных элементов, содержащихся в минералах.

    Все РАДИОЛОГИЧЕСКИЕ методы основаны на явлении самопроизвольного распада радиоактивных элементов и исходят из предпосылки, что скорость этого процесса (период полураспада) для каждого радиоактивного элемента является величиной постоянной. Период полураспада Т, т.е. времени, в течение которого распадается половина атомов данного вещества, определяется:

    Где - константа, характеризующая скорость радиоактивного распада; - средняя продолжительность жизни радиоактивных атомов.

    Очевидно, что в каждом минерале, содержащим радиоактивный элемент, распад начинается с момента образования минерала. Исходя из Известной скорости распада, зная содержание элемента и продуктов его Распада в минерале, можно установить его возраст.

    В настоящее время применяются следующие радиологические методы:

    1. Ураново–ториево-свинцовый метод - основан на превращении урана и тория в радиоактивный свинец:

    Для вычисления возраста относительно молодых минералов применяется формула:

    Изотопы радиоактивных методов определяются с помощью специальных приборов - масс-спектрометров. Этот метод надежен, однако минералы, пригодные для анализа, сравнительно редки.

    2. Калий-аргоновый метод основан на том, что изотоп калия с атомной массой 40 в результате захвата ядром электрона с ближайшего к нему К-уровня превращается в аргон . Возраст определяют по отношению . Чем оно больше, тем древнее объект.

    Расчетная формула для определения возраста данным методом

    имеет вид:

    где и найденные весовые количества изотопов аргона и калия.

    3.Рубидиево-стронцевый метод - основан на превращении изотопов рубидия с атомной массой 81 в стронций с тем же атомным номе ром. Применяется при определении возраста магматических и метаморфических пород.

    4.Углеродистый метод - используется для определения возраста четвертичных отложений и в археологии. Это связано с тем, что период полураспада изотопа углерода составляет всего 5,5-6 тыс. лет. При этом можно определять возраст образований не превышающий50-70 тыс. лет. Изотоп образуется в атмосфере под действием космических лучей и хорошо усваивается растениями, а после их отмирания переходит в горные породы.

    Радиологические методы позволили выразить в годах продолжительность наиболее крупных отрезков в истории земной коры. Этими методами установлено, что формирование земной коры началось 3,6-4,5 млрд. лет назад.

    Геологическая хронология, или геохронология , основана на выяснении геологической истории наиболее хорошо изученных регионов, например, в Центральной и Восточной Европе. На основе широких обобщений, сопоставления геологической истории различных регионов Земли, закономерностей эволюции органического мира в конце прошлого века на первых Международных геологических конгрессах была выработана и принята Международная геохронологическая шкала, отражающая последовательность подразделений времени, в течение которых формировались определенные комплексы отложений, и эволюцию органического мира. Таким образом, международная геохронологическая шкала - это естественная периодизация истории Земли.

    Среди геохронологических подразделений выделяются: эон, эра, период, эпоха, век, время. Каждому геохронологическому подразделению отвечает комплекс отложений, выделенный в соответствии с изменением органического мира и называемый стратиграфическим: эонотема, группа, система, отдел, ярус, зона. Следовательно, группа является стратиграфическим подразделением, а соответствующее ей временное геохронологическое подразделение представляет эра. Поэтому существуют две шкалы: геохронологическая и стратиграфическая. Первую используют, когда говорят об относительном времени в истории Земли, а вторую, когда имеют дело с отложениями, так как в каждом месте земного шара в любой промежуток времени происходили какие-то геологические события. Другое дело, что накопление осадков было неповсеместным.

    • Архейская и протерозойская эонотемы, охватывающие почти 80% времени существования Земли, выделяются в криптозой, так как в докембрийских образованиях полностью отсутствует скелетная фауна и палеонтологический метод к их расчленению неприменим. Поэтому разделение докембрийских образований базируется в первую очередь на общегеологических и радиометрических данных.
    • Фанерозойский эон охватывает всего 570 млн. лет и расчленение соответствующей эонотемы отложений базируется на большом разнообразии многочисленной скелетной фауны. Фанерозойская эонотема подразделяется на три группы: палеозойскую, мезозойскую и кайнозойскую, отвечающие крупным этапам естественной геологической истории Земли, рубежи которых отмечены достаточно резкими изменениями органического мира.

    Названия эонотем и групп происходят от греческих слов:

    • "археос" - самый древний, древнейший;
    • "протерос" - первичный;
    • "палеос" - древний;
    • "мезос" - средний;
    • "кайнос" - новый.

    Слово "криптос" означает скрытый, а "фанерозой" - явный, прозрачный, так как появилась скелетная фауна.
    Слово "зой" происходит от "зоикос" - жизненный. Следовательно, "кайнозойская эра" означает эру новой жизни и т.д.

    Группы подразделяются на системы, отложения которых сформировались в течение одного периода и характеризуются только им свойственными семействами или родами организмов, а если это растения, то родами и видами. Системы были выделены в различных регионах и в разное время, начиная с 1822 г. В настоящее время выделяются 12 систем, названия большей части которых происходят от тех мест, где они впервые были описаны. Например, юрская система - от Юрских гор в Швейцарии, пермская - от Пермской губернии в России, меловая - по наиболее характерным породам - белому писчему мелу и т.д. Четвертичную систему нередко именуют антропогеновой, так как именно в этом возрастном интервале появляется человек.

    Системы подразделяются на два или три отдела, которым соответствуют ранняя, средняя, поздняя эпохи. Отделы, в свою очередь, разделяются на ярусы, которые характеризуются присутствием определенных родов и видов ископаемой фауны. И, наконец, ярусы подразделяются на зоны, являющиеся наиболее дробной частью международной стратиграфической шкалы, которой в геохронологической шкале соответствует время. Названия ярусов даются обычно по географическим названиям районов, где этот ярус был выделен; например, алданский, башкирский, маастрихтский ярусы и т.д. В то же время зона обозначается по наиболее характерному виду ископаемой фауны. Зона охватывает, как правило, только определенную часть региона и развита на меньшей площади, нежели отложения яруса.

    Всем подразделениям стратиграфической шкалы соответствуют геологические разрезы, в которых эти подразделения были впервые выделены. Поэтому такие разрезы являются эталонными, типичными и называются стратотипами, в которых содержится только им свойственный комплекс органических остатков, определяющий стратиграфический объем данного стратотипа. Определение относительного возраста каких-либо слоев и заключается в сравнении обнаруженного комплекса органических остатков в изучаемых слоях с комплексом ископаемых в стратотипе соответствующего подразделения международной геохронологической шкалы, т.е. возраст отложений определяют относительно стратотипа. Именно поэтому палеонтологический метод, несмотря на присущие ему недостатки остается наиболее важным методом определения геологического возраста горных пород. Определение относительного возраста, например, девонских отложений, свидетельствует лишь о том, что эти отложения моложе силурийских, но древнее каменноугольных. Однако установить длительность формирования девонских отложений и дать заключение о том, когда (в абсолютном летоисчислении) произошло накопление этих отложений - невозможно. Только методы абсолютной геохронологии способны ответить на этот вопрос.

    Таб. 1. Геохронологическая таблица

    Эра Период Эпоха Продол- житель- ность, млн. лет Время от начала периода до наших дней, млн. лет Геологические условия Растительный мир Животный мир
    Кайнозой (время млекопитающих) Четвертичный Современная 0,011 0,011 Конец последнего ледникового периода. Климат теплый Упадок древесных форм, расцвет травянистых Эпоха человека
    Плейстоцен 1 1 Повторные оледенения. Четыре ледниковых периода Вымирание многих видов растений Вымирание крупных млекопитающих. Зарождение человеческого общества
    Третичный Плиоцен 12 13 Продолжается поднятие гор на западе Северной Америки. Вулканическая активность Упадок лесов. Распространение лугов. Цветковые растения; развитие однодольных Возникновение человека от человекообразных обезьян. Виды слонов, лошадей, верблюдов, сходные с современными
    Миоцен 13 25 Образовались Сиерры и Каскадные горы. Вулканическая активность на северо-западе США. Климат прохладный Кульминационный период в эволюции млекопитающих. Первые человекообразные обезьяны
    Олигоцен 11 30 Материки низменные. Климат теплый Максимальное распространение лесов. Усиление развития однодольных цветковых растений Архаические млекопитающие вымирают. Начало развития антропоидов; предшественники большинства ныне живущих родов млекопитающих
    Эоцен 22 58 Горы размыты. Внутриконтинентальные моря отсутствуют. Климат теплый Разнообразные и специализированные плацентарные млекопитающие. Копытные и хищники достигают расцвета
    Палеоцен 5 63 Распространение архаических млекопитающих
    Альпийское горообразование (незначительное уничтожение ископаемых)
    Мезозой (время пресмыкающихся) Мел 72 135 В конце периода образуются Анды, Альпы, Гималаи, Скалистые горы. До этого внутриконтинентальные моря и болота. Отложение писчего мела, глинистых сланцев Первые однодольные. Первые дубовые и кленовые леса. Упадок голосеменных Динозавры достигают наивысшего развития и вымирают. Зубатые птицы вымирают. Появление первых современных птиц. Архаические млекопитающие обычны
    Юра 46 181 Материки довольно возвышенные. Мелководные моря покрывают некоторую часть Европы и запад США Увеличивается значение двудольных. Цикадофиты и хвойные обычны Первые зубатые птицы. Динозавры крупные и специализированные. Насекомоядные сумчатые
    Триас 49 230 Материки приподняты над уровнем моря. Интенсивное развитие условий аридного климата. Широкое распространение континентальных отложений Господство голосеменных, уже начинающих клониться к упадку. Вымирание семенных папоротников Первые динозавры, птерозавры и яйцекладущие млекопитающие. Вымирание примитивных земноводных
    Герцинское горообразование (некоторое уничтожение ископаемых)
    Палеозой (эра древней жизни) Пермь 50 280 Материки приподняты. Образовались Аппалачские горы. Усиливается засушливость. Оледенение в южном полушарии Упадок плаунов и папоротникообразных растений Многие древние животные вымирают. Развиваются звероподобные пресмыкающиеся и насекомые
    Верхний и средний карбон 40 320 Материки сначала низменные. Обширные болота, в которых образовался уголь Большие леса семенных папоротников и голосеменных Первые пресмыкающиеся. Насекомые обычны. Распространение древних земноводных
    Нижний карбон 25 345 Климат вначале теплый и влажный, позднее в связи с поднятием суши - более прохладный Господствуют плауны и папоротникообразные растения. Все шире распространяются голосеменные Морские лилии достигают наивысшего развития. Распространение древних акул
    Девон 60 405 Внутриконтинентальные моря небольшого размера. Поднятие суши; развитие аридного климата. Оледенение Первые леса. Наземные растения хорошо развиты. Первые голосеменные Первые земноводные. Обилие двоякодышащих и акул
    Силур 20 425 Обширные внутриконтинентальные моря. Низменные местности становятся все более засушливыми по мере поднятия суши Первые достоверные следы наземных растений. Господствуют водоросли Господствуют морские паукообразные. Первые (бескрылые) насекомые. Усиливается развитие рыб
    Ордовик 75 500 Значительное погружение суши. Климат теплый, даже в Арктике Вероятно, появляются первые наземные растения. Обилие морских водорослей Первые рыбы, вероятно пресноводные. Обилие кораллов и трилобитов. Разнообразные молюски
    Кембрий 100 600 Материки низменные, климат умеренный. Самые древние породы с обильными ископаемыми Морские водоросли Господствуют трилобиты и нлеченогие. Зарождение большинства современных типов животных
    Второе великое горообразование (значительное уничтожение ископаемых)
    Протерозой 1000 1600 Интенсивный процесс осадкообразования. Позднее - вулканическая активность. Эрозия на обширных площадях. Многократные оледенения Примитивные водные растения - водоросли, грибы Различные морские простейшие. К концу эры - моллюски, черви и другие морские беспозвоночные
    Первое великое горообразование (значительное уничтожение ископаемых)
    Архей 2000 3600 Значительная вулканическая активность. Слабый процесс осадкообразования. Эрозия на больших зглощадях Ископаемые отсутствуют. Косвенные указания на существование живых организмов в виде отложений органического вещества в породах

    Проблема определения абсолютного возраста горных пород, продолжительности существования Земли издавна занимала умы геологов, и попытки ее решения предпринимались много раз, для чего использовались различные явления и процессы. Ранние представления об абсолютном возрасте Земли были курьезными. Современник М. В. Ломоносова французский естествоиспытатель Бюффон определял возраст нашей планеты всего лишь в 74 800 лет. Другие ученые давали различные цифры, не превышающие 400-500 млн. лет. Здесь следует отметить, что все эти попытки заранее были обречены на неудачу, так как они исходили из постоянства скоростей процессов, которые, как известно, менялись в геологической истории Земли. И только в первой половине XX в. появилась реальная возможность измерять действительно абсолютный возраст горных пород, геологических процессов и Земли как планеты.

    Таб.2. Изотопы, используемые для определения абсолютного возраста
    Материнский изотоп Конечный продукт Период полураспада, млрд.лет
    147 Sm 143 Nd+He 106
    238 U 206 Pb+ 8 He 4,46
    235 U 208 РЬ+ 7 He 0,70
    232 Th 208 РЬ+ 6 Не 14,00
    87 Rb 87 Sr+β 48,80
    40 K 40 Аr+ 40 Са 1,30
    14 C 14 N 5730 лет
    Похожие публикации