Физик который ввел термин электрический ток. марта в Крыму - это выходной или рабочий день. Новый виток исследований

2002-04-26T16:35Z

2008-06-05T12:03Z

https://сайт/20020426/129934.html

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

Электричество - величайшее изобретение человечества

4241

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита. ----Основные свойства и законы электричества--установлены любителями. Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров. Электричество--это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания. Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития. Янтарь упорно терли, любовались...

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита.

Основные свойства и законы электричества--установлены любителями.

Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров.

Электричество--это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания.

Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития.

Янтарь упорно терли, любовались им, делали из него различные украшения, и на этом дело ограничивалось.

В 1600 г. в Лондоне была опубликована книга английского врача В.Гильберта, в которой он впервые показал, что способностью янтаря притягивать после трения легкие предметы обладают и многие другие тела, в том числе стекло. Он заметил также, что влажность воздуха в значительной степени препятствует этому явлению.

Ошибочная концепция Гильберта.

Однако Гильберт и первым ошибочно установил различительную грань между электрическими и магнитными явлениями, хотя в действительности эти явления порождаются одними и теми же электрическими частицами и никакой грани между электрическими и магнитными явлениями не существует. Эта ошибочная концепция имела далеко идущие последствия и надолго запутала существо вопроса.

Гильберт обнаружил также, что магнит теряет магнитные свойства при нагревании и восстанавливает их при охлаждении. Он использовал насадку из мягкого железа для усиления действия постоянных магнитов, первым стал рассматривать Землю, как магнит. Уже из одного этого краткого перечисления видно, что врачом Гильбертом были сделаны важнейшие открытия.

Самое удивительное в этом анализе заключается в том, что до Гильберта, начиная от древних греков, которые установили свойства янтаря, и китайцев, которые пользовались компасом, не было никого, кто бы сделал такие выводы и так систематизировал наблюдения.

Вклад в науку О.Генрике.

Тогда события развивались необыкновенно медленно. Прошел 71 год, прежде чем немецким бургомистром О.Герике в 1671 г. был сделан следующий шаг. Вклад его в электричество был огромным.

Герике установил взаимное отталкивание двух наэлекризованных тел (Гильберт полагал, что существует лишь притяжение), передачу электричества от одного тела к другому с помощью проводника, электризацию посредством влияния при приближении к незаряженному телу наэлектризованного тела, и, самое главное,-- первым построил основанную на трении электрическую машину. Т.е.

он создал все возможности для дальнейшего проникновения в сущность электрических явлений.

Не только физики внесли свой вклад в развитие электричества.

Прошло еще 60 лет, прежде чем французский ученый Ш.Дюфе в 1735-37 гг. и американский политик Б.Франклин в 1747-54 гг.

установили, что электрические заряды бывают двух родов. И, наконец, в 1785 г. французским артиллерийским офицером Ш.Кулоном был сформирован закон взаимодействия зарядов.

Надо указать также на работу итальянского врача Л.Гальвани. Огромное значение имели работы А.Вольта по созданию мощного источника постоянного тока в виде "вольтова столба".

Важный вклад в познание электричества произошел в 1820 г., когда датский профессор физики Х.Эрстед открыл воздействие проводника с током на магнитную стрелку. Практически одновременно было открыто и изучено А.Ампером взаимодействие между собой токов, имеющее чрезвычайно важное прикладное значение.

Большой вклад в изучение электричества был внесен также аристократом Г.Кавендишем, аббатом Д.Пристли, школьным учителем Г.Омом. На основании всех этих исследований подмастерье М.Фарадей открыл в 1831 г. электромагнитную индукцию, которая в действительности является одной из форм взаимодействия токов.

Почему в течение тысячелетий люди ничего не знали об электричестве? Почему в этом процессе участвовали самые различные слои населения? В связи с развитием капитализма был общий подъем экономики, ломались средневековые кастовые и сословные предрассудки и ограничения, поднимался общий культурный и образовательный уровень населения. Однако и тогда не обошлось без трудностей. Например, Фарадею, Ому и ряду других талантливых исследователей приходилось вести ожесточенные бои со своими теоретическими противниками и оппонентами. Но все же, в конечном итоге, их идеи и взгляды публиковались и находили признание.

Из всего этого можно сделать интересные выводы: научные открытия делаются не только академиками, но и любителями науки.

Если мы хотим, чтобы наша наука находилась на передовых позициях, то должны помнить и учитывать историю ее развития, бороться с кастовостью и монополизмом односторонних взглядов, создавать равные условия для всех талантливых исследователей, независимо от их научного статуса.

Поэтому пора открыть страницы наших научных журналов для школьных учителей, артиллерийских офицеров, аббатов, врачей, аристократов и подмастерьев, чтобы и они смогли принять активное участие в научном творчестве. Сейчас они лишены такой возможности.

Современному человеку трудно представить жизнь без электричества. Оно прочно вошло в нашу жизнь, и мы мало задумываемся над тем, когда оно появилось. А ведь именно благодаря электричеству стали более интенсивно развиваться все направления науки и техники. Кто изобрел электричество, когда оно впервые появилось в мире?

История возникновения

Еще до нашей эры философ из Греции Фаллес заметил, что после трения янтаря о шерсть к камню притягиваются мелкие предметы. Затем исследованием таких явлений долгое время никто не занимался. Только в 17 веке исследовав магниты, их свойства английский ученый Уильям Гильберг ввел новый термин «электричество». Ученые стали больше проявлять интереса к нему и заниматься исследованиями в этой области.

Гильбергу удалось изобрести прообраз самого первого электроскопа, он назывался версор. С помощью этого прибора он установил, что кроме, янтаря и другие камни могут к себе притягивать мелкие предметы. В число камней входят:

Благодаря созданному прибору ученый смог провести несколько опытов и сделать выводы. Он понял, что пламя имеет свойство серьезно влиять на электрические свойства тел после трения. Ученый заявил, что гром и молния — явления электрической природы.

Великие открытия

Первые опыты по передаче электричества на малые расстояния были проведены в 1729 году. Ученые сделали вывод, что не все тела могут передавать электричество. Через несколько лет после ряда испытаний француз Шарль Дюфе заявил, что есть два типа электрического заряда — стеклянного и смоляного . Они зависят от материала, который используется для трения.

Затем учеными с разных стран были созданы конденсатор и гальванический элемент, первый электроскоп, медицинский электрокардиограф. Первая лампочка накаливания появилась в 1809 году, которую создал англичанин Деларю. Спустя 100 лет, Ирнвинг Ленгмюр разработал лампочку с вольфрамовой спиралью, заполненной инертным газом.

В 19 веке было много очень важных открытий , благодаря которым появилось электричество в мире Большую лепту в области открытий внесли известные всему миру ученые:

Они изучали свойства электричества и многие из них названы в их честь. В конце 19 века ученые-физики делают открытия о существовании электрических волн. Им удается создать лампу накаливания и передавать электрическую энергию на большие расстояния. С этого момента электричество медленно, но уверенно начинает распространяться по всей планете.

Когда появилось электричество в России?

Если говорить об электрификации на территории Российской империи, то в этом вопросе нет конкретной даты . Всем известно, что в 1879 году в Санкт-Петербурге сделали освещение по всему Литейному мосту. Он освещался с помощью ламп. Однако, в Киеве были установлены электрические фонари в одном из железнодорожных цехов на год раньше. Это событие не привлекло к себе внимание, поэтому официальной датой появления электрического освещения в Российской империи считается 1879 год.

Первый электротехнический отдел появился в России 30 января 1880 года в Русском техническом обществе. Отдел был обязан курировать внедрение электричества в повседневную жизнь государства. Уже в 1881 году Царское Село было полностью освещенным населенным пунктом и стало первым современным и европейским городом.

15 мая 1883 года считается также знаковой датой для страны. Это связано с проведением иллюминации Кремля. В это время вступал на престол император Александр III, а иллюминация была приурочена к такому важному событию. Почти сразу после этого исторического события освещение было проведено сначала на главной улице и затем в Зимний дворец Санкт-Петербурга.

По указу императора в 1886 году было учреждено «Общество электроосвещения». В его обязанности входило освещение двух главных городов — Москва и Санкт-Петербург. Уже через два года началось строительство электростанций по всем крупнейшим городам. Первый электротрамвай в России был запущен в 1892 году. В Петербурге через 4 года пустили в эксплуатацию первую ГЭС. Она была построена на реке Большая Охта.

Важным событием было появление первой электростанции в Москве в 1897 году. Ее построили на Раушской набережной с возможностью вырабатывать переменный трехфазный ток . Она сделала доступной передачу электричества на большие расстояния и использовать его без потери мощности. Строительство электростанций в других российских городах стало развиваться только перед Первой мировой войной.

Интересные факты истории появления электричества в России

Если внимательно изучать некоторые факты электрификации Российского государства можно узнать много любопытной информации.

Первую лампочку накаливания с угольным стержнем изобрел в 1874 году А.Н.Лодыгин. Устройство было запатентовано крупнейшими странами Европы. Через время ее усовершенствовал Т. Эдиссон и лампочку стали использовать по всей планете.

Русский электротехник П.Н. Яблочков в 1876 году закончил разработку электрической свечи. Она стала проще, дешевле и удобней чем лампочка Лодыгина в эксплуатации.

В составе Русского технического общества был создан Особый Электротехнический отдел. В него входили П.Н. Яблочков, А.Н.Лодыгин, В.Н.Чиколев и другие активные физики и электротехники. Главная задача отдела было — содействие развитию электротехники в России.


ВВЕДЕНИЕ

Начнем наш рассказ словами самого Теслы, написавшего незадолго до смерти замечательный очерк истории электротехники "Сказку об электричестве": "Кто действительно хочет помять все величие нашего времени, тот должен познакомиться с историей науки об электричестве”.

Впервые явления, ныне называемые электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Сохранившиеся предания гласят, что древнегреческому философу Фалесу Милетскому (640-550 гг. до н. э.) было уже известно свойство янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря - "электрон" - явление это позднее получило наименование электризации.

На протяжении многих столетий, электрические явления считались проявлениями божественной силы, пока в 17в. ученые не подошли вплотную к изучению электричества. Кулон, Гильберт, Отто фон Герике, Мушенбрек, Франклин, Эрстед, Араго, Ломоносов, Луиджи Гальвани, Алессандро Вольта - вот далеко не полный список ученых занимавшихся проблемами электричества. Особо следует сказать о деятельности замечательного ученого Андре Мари Ампера, положившего начало изучению динамических действий электрического тока и установившему целый ряд законов электродинамики.

Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. Другой английский физик Джеймс Клерк (Кларк) Ма́ксвелл 1873 году издал капитальный двухтомный труд «Трактат об электричестве и магнетизме», который объединил понятия электричество, магнетизм и электромагнитное поле. С этого момента началась эра активного использования электрической энергии в повседневной жизни.

1. ЭЛЕКТРИЧЕСТВО

Электри́чество — понятие, выражающее свойства и явления, обусловленные структурой физических тел и процессов, сущностью которой является движение и взаимодействие микроскопических заряженных частиц вещества (электронов, ионов, молекул, их комплексов и т. п.) .

Гильберт впервые обнаружил, что свойства электризации присущи не только янтарю, но и алмазу, сере, смоле. Он заметил также, что некоторые тела, например металлы, камни, кость, не электризуются, и разделил все тела, встречающиеся в природе, электризуемые и неэлектризуемые. Обратив особое внимание на первые, он производил опыты по изучению их свойств.

В 1650 году известный немецкий ученый, бургомистр города Магдебурга, изобретатель воздушного насоса Отто фон Герике построил специальную "электрическую машину", представлявшую шар из серы величиной с детскую голову, насаженный на ось.

Рисунок 1 - Электрическая машина фон Герике, усовершенствованная Ван де Графом

Если при вращении шара его натирали ладонями рук, он вскоре приобретал свойство притягивать и отталкивать легкие тела. На протяжении нескольких столетий машину Герике значительно усовершенствовали англичанин Хоксби, немецкие ученые Бозе, Винклер и другие. Опыты с этими машинами привели к ряду важных открытий:

· в 1707 году французский физик дю Фей обнаружил различие между электричеством, получаемым от трения стеклянного шара и получаемым от трения крута из древесной смолы;

· в 1729 году англичане Грей и Уилер обнаружили способность некоторых тел проводить электричество и впервые указали на то, что все тела можно разделить на проводники и непроводники электричества.

Но значительно более важное открытие было описано в 1729 году Мушенбреком - профессором математики и философии в городе Лейдене. Он обнаружил, что стеклянная банка, оклеенная с обеих сторон оловянной фольгой (листочками станиоля), способна накапливать электричество. Заряженное до определенного потенциала (понятие о котором появилось значительно позднее), это устройство могло быть разряжено со значительным эффектом - большой искрой, производившей сильный треск, подобный разряду молнии, и оказывавшей физиологические действия при прикосновении рук к обкладкам банки. От названия города, где производились опыты, прибор, созданный Мушенбреком, был назван лейденской банкой.

Рисунок 2 - Лейденская банка. Параллельное соединение четырёх банок

Исследования ее свойств производились в различных странах и вызвали появление множества теорий, пытавшихся объяснить обнаруженное явление конденсации заряда. Одна из теорий этого явления была дана, выдающимся американским ученым и общественным деятелем Бенджамином Франклином, который указал на существование положительного и отрицательного электричества. С точки зрения этой теории Франклин объяснил процесс заряда и разряда лейденской банки и доказал, что ее обкладки можно произвольно электризовать разными по знаку электрическими зарядами.

Франклин, как и русские ученые М. В. Ломоносов и Г. Рихман, уделил немало внимания изучению атмосферного электричества, грозового разряда (молнии). Как известно, Рихман погиб, производя опыт по изучению молнии. В 1752 году Бенджамином Франклином изобретен молниеотвод. Молниеотвод (в быту также употребляется более благозвучное «громоотвод») — устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии. Состоит из трёх связанных между собой частей:

В 1785 году Ш. Кулоном открыт основной закон электростатики. На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия неподвижных зарядов, находящихся в вакууме, прямо пропорциональна произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними- , :

В 1799 год Создан первый источник электрического тока — гальванический элемент и батарея элементов. Гальванический элемент (химический источник тока) - устройство, которое позволяет превращать энергию химической реакции в электрическую работу. По принципу работы различают первичные (разовые), вторичные (аккумуляторы) и топливные элементы. Гальванический элемент состоит из ионпроводящего электролита и двух разнородных электродов (полуэлементов), процессы окисления и восстановления в гальваническом элементе пространственно разделены. Положительный полюс гальванического элемента называется катодом , отрицательный - анодом . Электроны выходят из элемента через анод и движутся во внешней цепи к катоду .

Работы русских академиков Эпинуса, Крафта и других выявили целый ряд весьма важных свойств электрического заряда, но все они изучали электричество в состоянии неподвижном или мгновенный раз ряд его, то есть свойства статического электричества. Движение его проявлялось лишь в форме разряда. Об электрическом токе, то есть о непрерывном движении электричества, еще ничего не было известно.

Одним из первых глубоко исследовал свойства электрического тока в 1801 -1802 годах петербургский академик В. В. Петров. Работы этого выдающегося ученого, построившего самую крупную в мире в те годы батарею из 4200 медных и цинковых кружков, установили возможность практического использования электрического тока для нагрева проводников. Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги. В. В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники.

Опыты с электрическим током привлекали внимание многих ученых разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В конце 1819 года это явление было вновь наблюдаемо датским физиком Эрстедом, который в марте 1820 года опубликовал на латинском языке брошюру под заглавием "Опыты, касающиеся действия электрического конфликта на магнитную стрелку". В этом сочинении "электрическим конфликтом" был назван электрический ток.

Едва лишь Араго продемонстрировал на заседании Парижской Академии наук опыт Эрстеда, как Ампер, повторив его, 18 сентября 1820 года, ровно через неделю, представил в академию сообщение о своих исследованиях. На следующем заседании, 25 сентября, Ампер докончил чтение доклада, в котором он изложил законы взаимодействия двух токов, протекающих по параллельно расположенным проводникам. С этого момента академия еженедельно слушала новые сообщения Ампера о его опытах, завершивших открытие и формулирование основных законов электродинамики.

Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления - электричество и магнетизм - одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы. Эта теория, встреченная современниками Ампера с большим недоверием, была весьма прогрессивной и сыграла огромную роль в правильном понимании открытых позднее явлений.

В 1827 году немецкий ученый Георг Ом открыл один из фундаментальных законов электричества, устанавливающий основные зависимости между силой тока, напряжением и сопротивлением цепи, по которой протекает электрический ток, , ,

В 1847 году Кирхгоф сформулировал законы развертывания токов в сложных цепях , , , :

· Первый закон Кирхгофа

Применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю. Знаки определяются в зависимости от того, направлен ток к узлу или от него (в любом случае произвольно).

· Второй закон Кирхгофа

Применяется к контурам: в любом контуре сумма напряжений на всех элементах и участках цепи, входящих в этот контур, равна нулю. Направление обхода каждого контура можно выбирать произвольно. Знаки определяются в зависимости от совпадения напряжений с направлением обхода.

Вторая формулировка: в любом замкнутом контуре алгебраическая сумма напряжений на всех участках с сопротивлениями, входящих в этот контур, равно алгебраической сумме ЭДС.

· Обобщение законов Кирхгофа

Пусть У - количество узлов цепи, В - количество ветвей, К - число контуров .

Рисунок 3 - Линейная разветвленная электрическая цепь (У=3, В=5, K=6)

2. МАГНЕТИЗМ (МАГНИТЫ)

Магнетизм - это форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля .

Магнитное поле- это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела .

Постоянный магнит - изделие из магнитотвердого материала, автономный источник постоянного магнитного поля.
Магниты [греч. magnetis, от Magnetis Lithos, — камень из Магнесии (древний город в Малой Азии)] бывают естественные и искусственные. Естественным магнитом является кусок железной руды, обладающий способностью притягивать к себе находящиеся вблизи небольшие железные предметы.

Гигантскими естественными магнитами являются Земля и другие планеты (Магнитосфера) так как они обладают магнитным полем. Искусственные магниты представляют собой предметы и изделия, получившие магнитные свойства в результате контакта с естественным магнитом или намагниченные в магнитном поле. Постоянный магнит является искусственным магнитом.

В наиболее простых случаях постоянный магнит представляет собой тело (в виде подковы, полосы, шайбы, стержня и т. д.), прошедшее соответствующую термическую обработку и предварительно намагниченное до насыщения.

Рисунок 4 - Виды магнитов: а) подковообразный; б) полосовой; в) кольцевой

Постоянный магнит обычно входит как составная часть в магнитную систему, предназначенную для формирования магнитного поля. Напряженность магнитного поля, формируемого постоянным магнитом, может быть как постоянная, так и регулируемая.
Различные части постоянного магнита притягивают железные предметы по-разному. Концы магнита, где притяжение максимальное, называются полюсами магнита, а средняя часть, где притяжение практически отсутствует, называется нейтральной зоной магнита. Искусственные магниты в виде полосы или подковы всегда имеют два полюса на концах полосы и нейтральную зону между ними. Можно намагнитить кусок стали таким образом, что он будет иметь 4, 6 и более полюсов, разделенных нейтральными зонами, при этом число полюсов всегда остается четным. Невозможно получить магнит с одним полюсом. Соотношение между размерами полюсных областей и нейтральной зоны магнита зависит от его формы.

Уединенный магнит в виде длинного и тонкого стержня называют магнитной стрелкой. Конец укрепленной на острие или подвешенной магнитной стрелки — простейший компас, указывает географический север Земли, и называется северным полюсом (N) магнита, противоположный полюс магнита, указывает на юг, и называется южным полюсом (S).
Области применения постоянных магнитов весьма разнообразны. Их применяют в электродвигателях, в автоматике, робототехнике, для магнитных муфт магнитных подшипников, в часовой промышленности, в бытовой технике, как автономные источники постоянного магнитного поля в электротехнике и радиотехнике.

Магнитные цепи, включающие постоянные магниты, должны быть разомкнутыми, т. е. иметь воздушный зазор. Если постоянный магнит изготовлен в виде кольцевого сердечника, то он практически не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри него. В этом случае магнитное поле вне сердечника практически отсутствует. Чтобы использовать магнитную энергию постоянных магнитов, нужно в замкнутом магнитопроводе создать воздушный зазор определенного размера-.

Когда постоянный магнит служит для создания магнитного потока в воздушном зазоре, например между полюсами подковообразного магнита, воздушный зазор уменьшает индукцию (и намагниченность) постоянного магнита .

3. ЭЛЕКТРОМАГНЕТИЗМ

Электромагнитное взаимодействие— одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Сам фотон электрическим зарядом не обладает, а значит не может непосредственно взаимодействовать с другими фотонами.

Из фундаментальных частиц в электромагнитном взаимодействии участвуют также имеющие электрический заряд частицы: кварки, электрон, мюон и тау-частица (из фермионов), а также заряженые калибровочные бозоны.

Электромагнитное взаимодействие отличается от слабого и сильноговзаимодействия своим дальнодействующим характером — сила взаимодействия между двумя зарядами спадает только как вторая степень расстояния (см.: закон Кулона). По такому же закону спадает с расстоянием гравитационное взаимодействие.

Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной с высокой степенью точности равных количеств положительных и отрицательных зарядов .

Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязан­ные переменные электрическое поле и магнитное поле. Взаимная связь электрического Е и магнитного Н полей заключается в том, что всякое изменение одного из них приводит к появ­лению другого: переменное электрическое поле, порождаемое уско­ренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке простран­ства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источ­ника и не исчезает с устранением источника (например, радио­волны не исчезают с прекращением тока в излучившей их антенне).

Электромагнитное поле в вакууме описывается напряженностью электри­ческого поля Е и магнитной индукцией В. Электромагнитное поле в среде характеризуется дополнительно двумя вспомогательными величина­ми: напряженностью магнитного поля Н и электрической индукцией D. Связь компонентов электромагнитного поля с зарядами и то­ками описывается уравнениями Максвелла.

Электромагнитные волны представляют собой электромагнитные колебания, распространяющиеся в пространстве с конеч­ной скоростью, зависящей от свойств среды (рисунок 5).

Рисунок 5 - Электромагнитные волны

Существо­вание электромагнитных волн предсказано английским физиком М. Фарадеем в 1832 г. Другой английский ученый, Дж. Максвелл, в 1865 г. теоретически показал, что электромагнитные колебания не остаются локализован­ными в пространстве, а распространяются во все стороны от источника. Теория Максвелла позволила единым образом подойти к описанию радио­волн, оптического излучения, рентгеновского излучения, гамма-излучения. Оказалось, что все эти виды излуче­ния - электромагнитные волны с различной длиной волны λ, т. е. родственны по своей природе. Каждое из них имеет своё определён­ное место в единой шкале электромагнитных волн (рисунок 6).

Рисунок 6 - Шкала электромагнитных волн

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Электромагнитные волны различных диапазонов длин волн характеризуются различными способами возбуждения и регистрации, по-разному взаимо­действуют с веществом. Процессы излучения и поглощения электромагнитных волн от самых длинных до ИК излучения достаточно полно описываются соотношениями классической электро­динамики.

В диапазонах более коротких длин волн, в особен­ности в диапазонах рентгеновских и γ-лучей, доминируют процессы, имеющие квантовую природу, и могут быть описаны только в рамках квантовой электроди­намики на основе представлении о дискретности этих процессов.

Электромагнитные волны широко используются в радиосвязи, радиолокации, телевидении, медицине, биологии, физике, астрономии и др. областях науки и техники .

Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. В 1821 году он нашел еще одно решение поставленной задачи превращения электрической и магнитной энергии в механическую и продемонстрировал свой прибор, в котором он получал явление непрерывного электромагнитного вращения. В тот же день Фарадей записал в свой рабочий дневник обратную задачу: "Превратить магнетизм в электричество". Более десяти лет потребовалось, чтобы решить ее и найти способ получения электрической энергии из магнитной и механической. Лишь в конце 1831 года Фарадей сообщил об открытии им явления, названного затем электромагнитной индукцией и составляющего основу всей современной электроэнергетики-.

4. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

Исследование Фарадея и работы русского академика Э. X. Ленца, сформулировавшего закон, по которому можно было определить направление электрического тока, возникающего в результате электромагнитной индукции, дали возможность создать первые электромагнитные генераторы и электродвигатели.

Вначале электрогенераторы и электродвигатели развивались независимо друг от друга, как две совершенно разные машины. Первый изобретатель электрического генератора, основанного на принципе электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное инициалами Р. М. Оно содержало описание первого в мире синхронного генератора и приложенный к нему чертеж. Фарадей, внимательно разобравшись в этом проекте, направил письмо Р. М. и чертеж в тот же журнал, в котором был в свое время помещен его доклад, надеясь, что неизвестный изобретатель, следя за журналом, увидит опубликованным не только свой проект, но и сопровождающее его письмо Фарадея, исключительно высоко оценивающее изобретение Р. М- , , .

Действительно, спустя почти полгода Р. М. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами, и человечество до сих пор, несмотря на тщательные розыски историков электротехники, остается в неведении, кому же оно обязано одним из важнейших изобретений. Машина Р. М. не имела устройства для выпрямления тока и была первым генератором переменного тока. Но этот ток, казалось, не мог быть использован для дугового освещения, электролиза, телеграфа, уже прочно вошедших в жизнь. Необходимо было, по мысли конструкторов того времени, создать машину, в которой можно было бы получать ток постоянным по направлению и величине.

Почти одновременно с Р. М. конструированием генераторов занимались братья Пикси и профессор физики Лондонского университета и член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный - так называемый коллектор. Дальнейшее развитие конструкций генератора постоянного тока шло необычайно быстрыми темпами. Менее чем за сорок лет динамо-машина приобрела почти полностью форму современного генератора постоянного тока. Правда, обмотка этих динамо-машин была распределена по окружности неравномерно, что ухудшало работу таких генераторов - напряжение в них то возрастало, то снижалось, вызывая неприятные толчки.

В 1870 году Зенобей Грамм предложил особую, так называемую кольцевую обмотку якоря динамо-машины. Равномерное распределение обмотки якоря давало возможность получать совершенно равномерное напряжение в генераторе и такое же вращение двигателя, что значительно улучшило свойства электрических машин. По существу, изобретение это повторяло то, что было уже создано и описано в 1860 году итальянским физиком Пачинноти, но прошло незамеченным и осталось неизвестным 3. Грамму. Машины с кольцевым якорем получили особенно большое распространение после того, как на Венской всемирной выставке в 1873 году была обнаружена обратимость электрических машин Грамма: одна и та же машина при вращении якоря давала электрический ток, при протекании тока через якорь вращалась и могла быть использована в качестве электродвигателя.

С этого времени начинается быстрый рост применения электродвигателей и все расширяющееся потребление электроэнергии, чему немало способствовало изобретение П. Н. Яблочковым способа освещения с помощью так называемой "свечи Яблочкова" - дуговой электролампы с параллельным расположением углей.

Простота и удобство "свечей Яблочкова", заменивших дорогие, сложные и громоздкие дуговые фонари с регуляторами для непрерывного сближения сгорающих углей, вызвали их повсеместное распространение, и вскоре "свет Яблочкова", "русский" или "северный" свет, освещал бульвары Парижа, набережные Темзы, проспекты столицы России и даже древние города Камбоджи. Это было подлинным триумфом русского- изобретателя.

Но для питания этих свечей электроэнергией потребовалось создание особых электрогенераторов, дающих не постоянный, а переменный ток, то есть ток, хотя бы и не часто, но непрерывно меняющий свою величину и направление. Это было необходимо потому, что угли, соединенные с разными полюсами генератора постоянного тока, сгорали неравномерно - анод, подключенный к положительному, сгорал вдвое быстрее катода. Переменный ток попеременно превращал анод в катод и тем самым обеспечивал равномерное сгорание углей. Специально для питания "свечей Яблочкова" и был создан самим П. Н. Яблочковым, а затем усовершенствован французскими инженерами Лонтеном и Граммом генератор переменного тока. Однако о двигателе переменного тока еще не возникало и мысли.

Вместе с тем для раздельного питания отдельных свечей от генератора переменного тока изобретателем был создан особый прибор - индукционная катушка (трансформатор), позволявший изменять напряжение тока в любом ответвлении цепи в соответствии с числом подключенных свечей. Вскоре растущие потребности в электроэнергии и возможности получения ее в больших количествах вступили в противоречие с ограниченными возможностями передачи ее на расстояние. Применявшееся в то время низкое напряжение (100-120 вольт) постоянного тока и передача его по проводам сравнительно небольшого сечения вызывали огромные потери в линиях передачи. С конца 70-х годов прошлого столетия основной проблемой, от успешного решения которой зависело все будущее электротехники, стала проблема передачи электроэнергии на значительные расстояния без больших потерь.

Первое теоретическое обоснование возможности передачи любых количеств электроэнергии на любые расстояния по проводам сравнительно небольшого диаметра без значительных потерь путем повышения напряжения было дано профессором физики Петербургского лесного института Д. А. Лачиновым в июле 1880 года. Вслед за этим французский физик и электротехник Марсель Депре в 1882 году на Мюнхенской электротехнической выставке осуществил передачу электроэнергии в несколько лошадиных сил на расстояние 57 километров с коэффициентом полезного действия в 38 процентов.

Позднее Депре произвел еще ряд опытов, осуществив передачу электроэнергии на расстояние в сотню километров и доведя мощность передачи до нескольких сот киловатт. Дальнейшее увеличение расстояния требовало значительного повышения напряжения. Депре довел его до 6 тысяч вольт и убедился, что изоляция пластин в коллекторе генераторов и электродвигателей постоянного тока не позволяет достигнуть более высокого напряжения.

Несмотря на все эти трудности, в начале 80-х годов развитие промышленности и концентрация производства все более и более настоятельно требовали создания нового двигателя, более совершенного, чем широко распространенная паровая машина. Уже было ясно, что электростанции выгодно строить вблизи месторождений угля или на реках с большим падением воды, в то время как фабрики возводить поближе к источникам сырья. Это зачастую требовало передачи огромных количеств электроэнергии к объектам ее потребления на значительные расстояния. Такая передача была бы целесообразна лишь при применении напряжения в десятки тысяч вольт. Но получить такое напряжение в генераторах постоянного тока было невозможно. На помощь пришли переменный ток и трансформатор: пользуясь ими, стали производить переменный ток низкого напряжения, затем повышать его до любой требуемой величины, передавать на расстояние высоким напряжением, а на месте потребления снова снижать до требуемого и использовать в токоприемниках.

Еще не существовало электродвигателей переменного тока. Ведь уже в начале 80-х годов электроэнергия потреблялась главным образом для силовых нужд. Электродвигатели постоянного тока для привода самых различных машин применялись все чаще и чаще. Создать электродвигатель, который мог бы работать на переменном токе, стало основной задачей электротехники. В поисках новых путей всегда необходимо оглянуться назад. Не было ли в истории электротехники чего-либо такого, что могло бы подсказать путь к созданию электродвигателя переменного тока? Поиски в прошлом увенчались успехом. Вспомнили: еще в 1824 году Араго демонстрировал опыт, положивший начало множеству плодотворных исследований. Речь идет о демонстрации "магнетизма вращения". Медный (не магнитный) диск увлекался вращающимся магнитом.

Возникла идея, нельзя ли, заменив диск витками обмотки, а вращающийся магнит вращающимся магнитным полем, создать электродвигатель переменного тока? Наверное, можно, но как получить вращение магнитного поля?

В эти годы было предложено много различных способов применения переменного тока. Добросовестный историк электротехники должен будет назвать имена различных физиков и инженеров, пытавшихся в середине 80-х годов создать электродвигатели переменного тока. Он не забудет напомнить об опытах Бейли (1879 г.), Марселя Депре (1883 г), Бредли (1887 г.), о работах Венстрома, Хазельвандера и многих других. Предложения, несомненно, были очень интересны, но ни одно из них не могло удовлетворить промышленность: электродвигатели их были либо громоздки и неэкономичны, либо сложны и ненадежны. Не был еще найден сам принцип постройки простых экономичных и надежных электродвигателей переменного тока.

Именно в этот период и начал, как мы уже знаем, поиски решения этой задачи Никола Тесла. Он шел своим путем, путем размышлений над сущностью опыта Араго, и предложил коренное решение возникшей проблемы, сразу же оказавшееся приемлемым для практических целей. Еще в Будапеште весной 1882 года Тесла ясно представил себе, что если каким-либо образом осуществить питание обмоток магнитных полюсов электродвигателя двумя различными переменными токами, отличающимися друг от друга лишь сдвигом по фазе, то чередование этих токов вызовет переменное образование северного и южного полюсов или вращение магнитного поля. Вращающееся магнитное поле должно увлечь и обмотку ротора машины.

Построив специальный источник двухфазного тока (двухфазный генератор) и такой же двухфазный электродвигатель, Тесла осуществил свою идею. И хотя конструктивно его машины были весьма несовершенны, принцип вращающегося магнитного поля, примененный в первых же моделях Теслы, оказался правильным.

Рассмотрев все возможные случаи сдвига фаз, Тесла остановился на сдвиге в 90°, то есть на двухфазном токе. Это было вполне логично - прежде чем создавать электродвигатели с большим числом фаз, следовало начать с тока двухфазного. Но можно было бы применить и другой сдвиг фаз: на 120° (трехфазный ток). Не проанализировав теоретически и не осмыслив все возможные случаи, даже не сравнив их между собой (вот в чем большая ошибка Теслы), он все свое внимание сосредоточил на двухфазном токе, создав двухфазные генераторы и электродвигатели и лишь мельком упомянул в своих патентных заявках о многофазных токах и возможности их применения.

Но Тесла не был единственным ученым, вспомнившим об опыте Араго и нашедшим решение важной проблемы. В те же годы исследованиями в области переменных токов занимался итальянский физик Галилео Феррарис, представитель Италии на многих международных конгрессах электриков (1881 и 1882 годы в Париже, 1883 год в Вене и другие). Подготавливая лекции по оптике, он пришел к мысли о возможности постановки опыта, демонстрирующего свойства световых волн. Для этого Феррарис укрепил на тонкой нити медный цилиндр, на который действовали два магнитных поля, сдвинутых под углом в 90°. При включении тока в катушки, попеременно создающие магнитные поля то в одной, то в другой из них, цилиндр под действием этих полей поворачивался и закручивал нить, в результате чего поднимался на некоторую величину вверх. Устройство это прекрасно моделировало явление, известное под названием поляризации света.

Феррарис и не предполагал использовать свою модель для каких-либо электротехнических целей. Это был всего лишь лекционный прибор, остроумие которого заключалось в умелом применении электродинамического явления для демонстраций в области оптики.

Феррарис не ограничился этой моделью. Во второй, более совершенной модели ему удалось достигнуть вращения цилиндра со скоростью до 900 оборотов в минуту. Но за определенными пределами, как бы ни увеличивалась в цепи сила тока, создававшего магнитные поля (другими словами, как бы ни увеличивалась затрачиваемая мощность), достигнуть увеличения числа оборотов не удавалось. Подсчеты показали, что мощность второй модели не превышала 3 ватт.

Несомненно, Феррарис, будучи не только оптиком, но и электриком, не мог не понимать значения произведенных им опытов. Однако ему, по собственному его признанию, и в голову не приходило применить этот принцип к созданию электродвигателя переменного тока. Самое большое, что он предполагал, это использовать его для измерения силы тока, и даже начал конструировать такой прибор.

18 марта 1888 года в Туринской Академии наук Феррарис сделал доклад "Электродинамическое вращение, произведенное с помощью переменных токов". В нем он рассказал о своих опытах и пытался доказать, что получение в таком приборе коэффициента полезного действия свыше 50 процентов невозможно. Феррарис был искренне убежден, что, доказав нецелесообразность использования переменных магнитных полей для практических целей, он оказывает науке большую услугу. Доклад Феррариса опередил сообщение Николы Теслы в Американском институте электроинженеров. Но заявка, поданная для получения патента еще в октябре 1887 года, свидетельствует о несомненном приоритете Теслы перед Феррарисом. Что же касается публикации, то статья Феррариса, доступная для чтения всем электрикам мира, была опубликована лишь в июне 1888 года, то есть после широко известного доклада Теслы.

На утверждение Феррариса, что работы по изучению вращающегося магнитного поля начаты им в 1885 году, Тесла имел все основания возразить, что он занимался этой проблемой еще в Граце, решение ее нашел в 1882 году, а в 1884 году в Страсбурге демонстрировал действующую модель своего двигателя Но, конечно, дело не только в приоритете. Несомненно, оба ученых сделали одно и то же открытие независимо друг от друга: Феррарис не мог знать о патентной заявке Теслы, так же как и последний не мог знать о работах итальянского физика.

Гораздо важнее то, что Г. Феррарис, открыв явление вращающегося магнитного поля и построив свою модель мощностью в 3 ватта, и не думал об их практическом использовании. Более того: если бы ошибочный вывод Феррариса о нецелесообразности применения переменных многофазных токов был принят, то человечество еще несколько лет было бы направлено по ложному пути и лишено возможности широкого использования электроэнергии в самых различных отраслях производства и быта. Заслуга Николы Теслы и заключается в том, что, несмотря на множество препятствий и скептическое отношение к переменному току, он практически доказал целесообразность применения многофазного тока. Созданные им первые двигатели двухфазного тока, хотя и имели ряд недостатков, привлекли внимание электротехников всего мира и возбудили интерес к его предложениям.

Однако статья Галилео Феррариса в журнале "Атти ди Турино" сыграла огромную роль в развитии электротехники. Ее перепечатал один крупный английский журнал, и номер с этой статьей попал в руки другого ученого, теперь заслуженно признанного создателем современной электротехники трехфазного тока.

5. ТРАНСФОРМАТОР ТЕСЛА

Известны различными по конструкции трансформаторы Тесла от простейших с разрядником до современных схем с задающими высокочастотными генераторами для его первичной обмотки, выполненных как на полупроводниковых так и на ламповых схемах.

Схема простейшего трансформатора Тесла:

В элементарной форме трансформатор Теслы состоит из двух катушек, первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как “выход”).

Рисунок 7 - Простейшая схема трансформатора Тесла

Рисунок 8 - Трансформатор Тесла в действии

Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.

Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств .


ВЫВОД

Ставшие привычными в нашей повседневной жизни вещи, использующие электроэнергию, являются плодами научной и технической мысли многих поколений ученых. Часто понимание практической ценности и значимости открытых явлений приходило с запозданием или приходило со следующим поколением ученых.

Однако, нельзя не отметить, что именно развитие электротехники, способствовало ускорению технического прогресса. Создание и развитие электрических машин постоянного и переменного тока позволило проектировать гибкие системы управления, что не могло быть реализуемо на двигателях, использующих энергию газа и жидкости. Развитие микропроцессорной техники позволило создавать мощные компьютеры, участвующие в экспериментах физиков-теоретиков, открывающих тайны мироздания (БАК в Церне).

По моему глубокому убеждению, в области электротехники осталось еще не мало загадок, тайн и великих открытий.

Назад Обновлено: 31.03.2019 09:28

You have no rights to post comments

. (история открытия явления)

До 1600 г. знания европейцев об электричестве оставалось на уровне древних греков, что повторяло историю развития теории паровых реактивных двигателей ("Элеопил" А. Герона).

Основоположником науки об электричестве в Европе стал выпускник Кембриджа и Оксфорда английский физик и придворный врач королевы Елизаветы - Уильям Гилберт (1544-1603). С помощью своего "версора" (первого электроскопа) У. Гильберт показал, что способностью притягивать легкие тела (соломинки) обладает не только натертый янтарь, но и алмаз, сапфир, карборунд, опал, аметист, горный хрусталь, стекло, сланцы и др., которые он назвал "электрическими" минералами.

Кроме того, Гильберт заметил, что пламя "уничтожает" электрические свойства тел, приобретенные при трении, и впервые исследовал магнитные явления, установив, что:

Магнит всегда имеет два полюса - северный и южный;
- одноименные полюса отталкиваются, а разноименные притягиваются;
- распиливая магнит, нельзя получить магнит только с одним полюсом;
- железные предметы под влиянием магнита приобретают магнитные свойства (магнитная индукция);
- природный магнетизм может быть усилен с помощью железной арматуры.

Изучая магнитные свойства намагниченного шара с помощью магнитной стрелки, Гильберт пришел к выводу, что они соответствуют магнитным свойствам Земли, а Земля является самым большим магнитом, что и объясняет постоянное наклонение магнитной стрелки.

1650 г.: Отто фон Герике (1602-1686) создает первую электрическую машину, извлекавшую из натираемого шара, отлитого из серы, значительные искры, уколы которых могли быть даже болезненными. Однако тайна свойств «электрической жидкости» , как в то время называли это явление, не получила тогда никакого объяснения.

1733 г.: французский физик , член Парижской Академии наук, Шарль Франсуа Дюфе (Dufay, Du Fay, 1698-1739) открыл существование двух видов электричества, которые назвал "стеклянным" и "смоляным". Первое возникает на стекле, горном хрустале, драгоценных камнях, шерсти, волосах и т. д.; второе - на янтаре, шелке, бумаге и т. п.

После многочисленных экспериментов Ш. Дюфе впервые электризовал тело человека и "получил" из него искры. В область его научных интересов входил магнетизм, фосфоресценция и двойное лучепреломление в кристаллах, ставшее впоследствии основой для создания оптических лазеров. Для обнаружения измерения электричества пользовался версором Гилберта, сделав его намного более чувствительным. Впервые высказал мысль об электрической природе молнии и грома.

1745 г.: выпускник Лейденского университета (Голландия) физик Питер ван Мушенбрук (Musschenbroek Pieter van, 1692-1761) изобрел первый автономный источник электроэнергии - лейденскую банку и провел с ней ряд опытов, в ходе которых установил взаимозвязь электрического разряда с его физиологическим действием на живой организм.

Лейденская банка представляла собой стеклянный сосуд, стенки которого снаружи и изнутри были оклеены свинцовой фольгой, и являлась первым электрическим конденсатором. Если обкладки прибора, заряженного от электростатического генератора О. фон Герике соединяли тонкой проволокой, то она быстро нагревалась, а иногда и плавилась, что указывало на наличие в банке источника энергии, которую можно было транспортировать далеко от места ее зарядки.

1747 г.: член Парижской Академии наук, французский физик-экспериментатор Жан Антуан Нолле (1700-1770) изобрел первый прибор для оценки электрического потенциала - электроскоп , зарегистрировал факт более быстрого "стекания" электричества с острых тел и впервые сформировал теорию действия электричества на живые организмы и растения.

1747–1753 гг.: американский государственный деятель, ученый и просветитель Бенджамин (Вениамин) Франклин (Franklin, 1706-1790) публикует цикл работ по физике электричества, в которых:
- ввел общепринятое теперь обозначение электрически заряженных состояний «+» и «–» ;
- объяснил принцип действия лейденской банки, установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки;
- установил тождество атмосферного и получаемого с помощью трения электричества и привел доказательство электрической природы молнии;
- установил, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними и предложил молниеотвод;
- выдвинул идею электрического двигателя и продемонстрировал «электрическое колесо», вращающееся под действием электростатических сил;
- впервые применил электрическую искру для взрыва пороха.

1759 г.: В России физик Франц Ульрих Теодор Эпинус (Aepinus, 1724-1802),впервые выдвигает гипотезу о наличии связи между электрическими и магнитными явлениями.

1761 г.: Швейцарский механик, физик и астроном Леонард Эйлер (L. Euler, 1707-1783) описывает новую электростатическую машину, состоящую из вращающегося диска из изоляционного материала с радиально наклеенными кожаными пластинами. Для съема электрического заряда к диску надо было подвести шелковые контакты, присоединенные к медным стержням со сферическими окончаниями. Приближая сферы друг к другу, можно было наблюдать процесс электрического пробоя атмосферы (искусственная молния).

1785-1789 гг.: Французский физик Шарль Огюстен Кулон (S. Coulomb, 1736-1806) публикует семь работ. в которых описывает закон взаимодействия электрических зарядов и магнитных полюсов (закон Кулона), вводит понятие магнитного момента и поляризации зарядов и доказывает, что электрические заряды всегда располагаются на поверхности проводника.

1791 г.: В Италии издается трактат Луиджи Гальвани (L. Galvani, 1737-1798), «De Viribus Electricitatis In Motu Musculari Commentarius» («Трактат о силах электричества при мышечном движении»), в котором доказывалось, что электричество вырабатывается живым организмом и наиболее эффективно проявляется в контакте разнородных проводников. В настоящее время этот эффект лежит в основе принципа действия электрокардиографов.

1795 г.: Итальянский профессор Александр Вольта (Alessandro Guiseppe Antonio Anastasio Volta, 1745-1827) исследует явление контактной разности потенциалов различных металлов и с помощью электрометра собственной конструкции дает численную оценку этому явлению. Результаты своих опытов А.Вольта впервые описывает 1 августа 1786 г. в письме своему другу. В настоящее время эффект контакной разности потенциалов используется в термопарах и системах анодной (электрохимической) защиты металлических сооружений.

1799 г:. А. Вольта изобретает источник гальванического (электрического) тока - вольтов столб . Первый вольтов столб состоял из 20 пар медных и цинковых кружочков, разделенных суконными кусочками, смоченными соленой водой, и предположительно мог давать напряжение 40-50 В и ток до 1 А.

В 1800 г. в журнале «Philosophical Transactions of the Royal Society, Vol. 90» под названием «On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds» («Электричество, получаемое в результате простого контакта разных веществ») было описано устройство, названное «электродвижущий аппарат», А. Вольта считал, что в основе принципа действия его источника тока лежит контактная разность потенциалов, и только спустя много лет было установлено, что причиной возникновения э.д.с. в гальваническом элементе является химическое взаимодействие металлов с проводящей жидкостью - электролитом. Осенью 1801 г. в России была создана первая гальваническая батарея, состоящая из 150 серебряных и цинковых дисков. Через год, осенью 1802 г., была изготовлена батарея из 4200 медных и цинковых дисков, дающая напряжение в 1500 В.

1820 г.: датский физик Ханс Кристиан Эрстед (Ersted, 1777-1851) в ходе опытов по отклонению магнитной стрелки под действием проводника с током, установил связь между электрическими и магнитными явлениями. Сообщение об этом явлении, опубликованное в 1820 г., стимулировало исследования в области электромагнетизма, что, в конечном счете, привело к формированию основ современной электротехники.

Первым последователем Х.Эрстеда стал французский физик Андре Мари Ампер (1775-1836) сформулировавший в том-же году правило определения направления действия электрического тока на магнитную стрелку, названное им "правилом пловца" (правило Ампера или правой руки), после чего были определены законы взаимодействия электрических и магнитных полей (1820 г.), в рамках которых впервые была сформулирована идея об использовании электромагнитных явлений для дистанционной передачи электрического сигнала.

В 1822 г. А. Ампер создает первый усилитель электромагнитного поля - многовитковые катушки из медного провода, внутри которых помещались сердечники из мягкого железа (соленоиды), ставшие технологической основой для изобретенного им в 1829 г. электромагнитного телеграфа, открывшего эру современной электросвязи.

821 г.: английский физик Майкл Фарадей (М. Faraday, 1791-1867) познакомился с работой Х. Эрстеда об отклонении магнитной стрелки вблизи проводника с током (1820) и после исследования взаимосвязи электрических и магнитных явлений установил факт вращения магнита вокруг проводника с током и вращения проводника с током вокруг магнита.

В течение последующих 10 лет М. Фарадей пытался «превратить магнетизм в электричество», результатом чего стало открытие в 1831 электромагнитной индукции , что привело к формированию основ теории электромагнитного поля и появлению новой отрасли промышленности - электротехники. В 1832 г. М. Фарадей публикует работу, в которой выдвигается идея о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий в атмосфере с конечной скоростью, что стало основой для появления новой отрасли знаний - радиотехники.

Стремясь установить количественные соотношения между различными видами электричества, М. Фарадей начал исследования по электролизу и в 1833–1834 гг. сформулировал его законы. В 1845 г., исследуя магнитные свойства различных материалов, М. Фарадей открывает явления парамагнетизма и диамагнетизма и установливает факт вращения плоскости поляризации света в магнитном поле (эффект Фарадея). Это было первое наблюдение связи между магнитными и оптическими явлениями, которое позднее было объяснено в рамках электромагнитной теории света Дж. Максвелла.

Примерно в это-же время свойства электричества изучал немецкий физик Георг Симон Ом (G.S. Ohm, 1787-1854). Проведя серию экспериментов, Г. Ом в 1826 г. сформулировал основной закон электрической цепи (закон Ома) и в 1827 г. дал его теоретическое обоснование, ввел понятия «электродвижущая сила», падение напряжения в цепи и «проводимость».

Закон Ома устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника т.е. RI = U . Коэффициент пропорциональности R , получивший в 1881 г. название омическое сопротивление или просто сопротивление зависит от температуры проводника и его геометрических и электрических свойств.

Исследования Г. Ома завершают второй этап развития электротехники, а именно фомирования теоретической базы для расчета характеристик электрических цепей, что стало основой современной электроэнергетики.

Отправить

Что такое электричество?

Электричество - это совокупность физических явлений, связанных с наличием электрического заряда. Хотя изначально электричество рассматривалось как явление, отдельное от магнетизма, но с разработкой уравнений Максвелла оба эти явления были признаны частью единого явления: электромагнетизма. Различные распространенные явления связаны с электричеством, такие как молнии, статическое электричество, электрическое отопление, электрические разряды и многие другие. Кроме того, электричество лежит в основе многих современных технологий.

Наличие электрического заряда, который может быть либо положительным, либо отрицательным, порождает электрическое поле. С другой стороны, движение электрических зарядов, которое называется электрическим током, создает магнитное поле.

Когда заряд помещается в точку с ненулевым электрическим полем, на него действует сила. Величина этой силы определяется законом Кулона. Таким образом, если бы этот заряд был перемещен, электрическое поле выполнило бы работу по перемещению (торможению) электрического заряда. Таким образом, можно говорить об электрическом потенциале в определенной точке пространства, равному работе, выполняемой внешним агентом при переносе единицы положительного заряда из произвольно выбранной точки отсчета до этой точки без какого-либо ускорения и, как правило, измеряемому в вольтах.

В электротехнике, электричество используется для:

  • подачи электроэнергии туда, где электрический ток используется для питания оборудования;
  • в электронике, имеющей дело с электрическими цепями, которые включают активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральные схемы, и связанные с ними пассивные элементы.

Электрические явления изучались с античных времен, хотя прогресс в теоретическом понимании начался в XVII и XVIII веках. Даже тогда практическое применение электричества было редкостью, и инженеры смогли использовать его в промышленных и жилых целях только в конце XIX века. Быстрое расширение электрических технологий в это время трансформировало промышленность и общество. Универсальность электричества заключается в том, что оно может использоваться почти в безграничном множестве отраслей, таких как транспорт, отопление, освещение, коммуникации и вычисления. Электроэнергия в настоящее время является основой современного индустриального общества.

История электричества

Задолго до того, как зародились какие-либо знания об электричестве, люди уже знали об ударах током электрической рыбы. Древнеегипетские тексты, датируемые 2750 годом до н. э., называли этих рыб "Громовержцы Нила" и описывали их как "защитников" всех других рыб. Свидетельства об электрических рыбах снова появляются тысячелетиями позже от древнегреческих, римских и арабских естествоиспытателей и врачей. Несколько древних писателей, такие, как Плиний Старший и Скрибониус Ларгус, свидетельствуют об онемении, как эффекте поражения электрическим током, производимым сомиками и электрическими скатами, а также они знали, что такие удары могут передаваться через проводящие ток предметы. Пациентам, страдающим от заболеваний, таких как подагра или головная боль прописывались прикосновения к таким рыбам с надеждой, что мощный электроудар может вылечить их. Возможно, что самое раннее и ближайшее приближение к открытию идентичности молнии и электричества из любого другого источника, было совершено арабами, у которых до 15-го века в языке слово "молния" (раад) применялось к электрическим скатам.

Древние культуры Средиземноморья знали, что если некоторые предметы, такие как янтарные палочки, потереть кошачьим мехом, то он нанёт притягивать легкие предметы, такие как перья. Фалес Милетский сделал ряд наблюдений статического электричества примерно в 600 г. до н.э., из которых он вывел, что для того, чтобы сделать янтарь способным притягивать предметы необходимо трение, в отличие от минералов, таких как магнетит, которым трение было не нужно. Фалес ошибался, полагая, что притяжение янтаря было связано с магнитным эффектом, но позже наука доказала связь между магнетизмом и электричеством. Согласно спорной теории, основанной на обнаружении Багдадской батареи в 1936 году, которая напоминает гальваническую ячейку, хотя неясно, был ли артефакт электрическим по своей природе, парфяне, возможно, знали о гальванотехнике.

Электричество продолжало вызывать не более, чем интеллектуальное любопытство на протяжении тысячелетий до 1600 года, когда английский ученый Уильям Гилберт провел тщательное изучение электричества и магнетизма, и выявил отличая "магнетитного" эффекта от статического электричества, производимого путем трения янтаря. Он придумал новое латинское слово electricus ("янтарный" или "как янтарь", от ἤλεκτρον, Elektron, с греческого: «янтарь») для обозначения свойства предметов притягивать мелкие предметы после натирания. Эта лингвистическая ассоциация породила английские слова «электрический» и «электричество», которые впервые появились в печати в работе Томаса Брауна "Pseudodoxia Epidemica" в 1646 году.

Дальнейшую работу проводили Отто фон Герике, Роберт Бойль, Стивен Грей и Шарль Франсуа Дюфе. В 18 веке Бенджамин Франклин провел обширные исследования в области электричества, продав свои владения для финансирования своей работы. В июне 1752 года он, как известно, прикрепил металлический ключ к нижней части нити воздушного змея и запустил змея в грозовое небо. Последовательность искр, соскакивающих с ключа на тыльную сторону ладони показала, что молния действительно имеет электрическую природу. Он также объяснил кажущее парадоксальным поведение лейденской банки в качестве устройства для хранения большого количества электрического заряда с точки зрения электричества, состоящего из положительных и отрицательных зарядов.

В 1791 году Луиджи Гальвани объявил о своем открытии биоэлектромагнетизма, демонстрируя, что электричество является средством, с помощью которого нейроны передают сигналы к мышцам. Аккумуляторная батарея Алессандро Вольта или гальванический столб 1800-х годов изготавливались из чередующихся слоев цинка и меди. Для ученых это был более надежный источник электрической энергии, чем электростатические машины, используемые ранее. Понимание электромагнетизма как единства электрических и магнитных явлений произошло благодаря Эрстеду и Андре-Мари Амперу в 1819-1820 годах. Майкл Фарадей изобрел электрический двигатель в 1821 году, а Георг Ом математически проанализировал электрическую цепь в 1827году. Электричество и магнетизм (и свет) были окончательно связаны Джеймсом Максвеллом, в частности, в его работе «О физических силовых линиях» в 1861 и 1862 годах.

В то время как в начале 19-го века мир стал свидетелем стремительного прогресса в науке об электричестве, в конце 19 века наибольший прогресс случился в области электротехники. С помощью таких людей, как Александр Грэхем Белл, Отто Титус Блати, Томас Эдисон, Галилео Феррарис, Оливер Хевисайда, Аньош Иштван Йедлик, Уильям Томсон, 1-й барон Кельвин, Чарльз Алджернон Парсонс, Вернер фон Сименс, Джозеф Уилсон Суон, Реджинальд Фессенден, Никола Тесла и Джордж Вестингауз, электричество превратилась из научного любопытства в незаменимый инструмент для современной жизни, став движущей силой второй промышленной революции.

В 1887 году Генрих Герц обнаружил, что электроды освещенные ультрафиолетовым светом, создают электрические искры более легко, чем не освещенные. В 1905 году Альберт Эйнштейн опубликовал статью, в которой были объяснены экспериментальные данные фотоэлектрического эффекта как результат переноса световой энергии дискретными квантованными пакетами, возбуждающими электроны. Это открытие привело к квантовой революции. Эйнштейн был удостоен Нобелевской премии по физике в 1921 году за "открытие закона фотоэлектрического эффекта". Фотоэлектрический эффект также используется в фотоэлементах таких, какие можно найти в панелях солнечных батарей, и это часто используется для выработки электроэнергии в коммерческих целях.

Первым полупроводниковым устройством стал детектор "кошачий ус", который был первым в использовании в радиоприемниках в 1900-х годах. Усоподобная проволочка приводится в легкое контактное прикосновение с твердым кристаллом (например, кристаллом германия) для того, чтобы продетектировать радиосигнал посредством контактно-переходного эффекта. В полупроводниковом узле, ток подается в полупроводниковые элементы и соединения, сконструированные специально для переключения и усиления тока. Электрический ток может представляться в двух формах: в виде отрицательно заряженных электронов, а также положительно заряженными вакансиями электронов (незаполненными электронами местами в атоме полупроводника), называемыми дырками. Эти заряды и дырки понимаются с позиции квантовой физики. Строительным материалом чаще всего является кристаллический полупроводник.

Развитие полупроводниковых устройств началось с изобретением транзистора в 1947 году. Распространенными полупроводниковыми устройствами являются транзисторы, микропроцессорные чипы и чипы оперативной памяти. Специализированный тип памяти, называемый флэш-памятью используется в USB флэш-накопителях, и совсем недавно полупроводниковыми накопителями стали заменять и накопители на механически вращающихся жестких магнитных дисках. Полупроводниковые устройства стали распространенными в 1950-х и 1960-х годах, в период перехода от вакуумных ламп к полупроводниковым диодам, транзисторам, интегральным схемам (ИС) и светодиодам (LED).

Основные понятия электричества

Электрический заряд

Наличие заряда порождает электростатическую силу: заряды оказывают друг на друга силовое действие, этот эффект был известен в древности, хотя и не был тогда понятен. Легкий шарик, подвешенный на веревочке может быть заряжен прикосновением к нему стеклянной палочкой, которая сама до этого была заряжена при трении о ткань. Подобный шар, заряженный тем же стеклянным стержнем будет отталкиваться от первого: заряд заставляет два шара отделяться друг от друга. Два шара, которые заряжаются от натертого янтарного стержня также отталкиваются друг от друга. Тем не менее, если один шар заряжается от стеклянной палочки, а другой - от янтарного стержня, то оба шара начинают притягиваются друг к другу. Эти явления были исследованы в конце восемнадцатого века Шарлем Огюстеном де Кулоном, который сделал вывод, что заряд проявляется в двух противоположных формах. Это открытие привело к известной аксиоме: одинаково заряженные объекты отталкиваются, а противоположно заряженные объекты притягиваются.

Сила действует на сами заряженные частицы, следовательно, заряд имеет тенденцию к как можно более равномерному распространению по проводящей поверхности. Величина электромагнитной силы, будь то притяжение или отталкивание, определяется законом Кулона, который гласит, что электростатическая сила пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними. Электромагнитное взаимодействие является очень сильным, оно уступает по силе только сильному взаимодействию, но в отличие от последнего, оно действует на любых расстояниях. По сравнению с гораздо более слабым гравитационным взаимодействием, электромагнитная сила, расталкивает два электрона в 1042 раз сильнее, чем гравитационная сила притягивает их.

Исследование показало, что источником заряда являются определенные типы субатомных частиц, которые обладают свойством электрического заряда. Электрический заряд порождает электромагнитную силу, которая является одной из четырех фундаментальных сил природы, и взаимодействует с ней. Наиболее известными носителями электрического заряда являются электрон и протон. Эксперимент показал, что заряд - сохраняющаяся величина, то есть, суммарный заряд внутри изолированной системы всегда будет оставаться постоянным вне зависимости от каких-либо изменений, которые происходят в пределах этой системы. В системе заряд может передаваться между телами либо прямым контактом, либо путем передачи по проводящему материалу, например проводу. Неофициальный термин "статическое электричество" означает чистое присутствие заряда (или "дисбаланс" зарядов) на теле, обычно вызываемое тем, что разнородные материалы, будучи потертыми друг о друга, передают заряд от один другому.

Заряды электронов и протонов противоположны по знаку, следовательно, суммарный заряд может быть как положительным, так и отрицательным. По соглашению, заряд переносимый электронами, считается отрицательным, а переносимый протонами - положительным, по традиции, заложенной работами Бенджамина Франклина. Величина заряда (количество электричества) обычно обозначается символом Q и выражается в кулонах; каждый электрон несет один и тот же заряд, приблизительно -1,6022 × 10-19 кулона. Протон имеет заряд, равный по значению и противоположный по знаку, и, таким образом, + 1,6022 × 10-19 Кулона. Зарядом обладает не только вещество, но и антивещество, каждая античастица несет равный заряд, но противоположный по знаку к заряду его соответствующей частицы.

Заряд можно измерить несколькими способами: ранний прибор-электроскоп с золотыми лепестками, который, хотя все еще используется для учебных демонстраций, в настоящее время вместо него применяется электронный электрометр.

Электрический ток

Движение электрических зарядов называется электрическим током, интенсивность его обычно измеряется в амперах. Ток может создаваться какими-либо движущимися заряженными частицами; чаще всего это электроны, но в принципе любой заряд приведенный в движение представляет собой ток.

По исторически сложившейся договоренности положительный ток определяется направлением движения положительных зарядов, перетекающих из более положительной части цепи в более отрицательную часть. Ток, определенный таким образом, называется условным током. Одной из наиболее известной формой тока является движение отрицательно заряженных электронов по цепи, и таким образом, положительное направление тока сориентировано в противоположном движению электронов направлении. Тем не менее, в зависимости от условий, электрический ток может состоять из потока заряженных частиц движущегося в любом направлении, и даже в обоих направлениях одновременно. Договоренность считать положительным направлением тока направление движения положительных зарядов широко используется для упрощения этой ситуации.

Процесс, при котором электрический ток проходит через материал, называется электрической проводимостью, и её природа изменяется в зависимости от того, какими заряженными частицами она осуществляется и от материала, через который они перемещаются. В качестве примеров электрических токов можно привести металлическую проводимость, осуществляемую потоком электронов через проводник, такой как металл, и электролиз, осуществляемый потоком ионов (заряженных атомов) через жидкость или плазму, как в электрических искрах. В то время как сами частицы могут двигаться очень медленно, иногда со средней скоростью дрейфа только доли миллиметра в секунду, электрическое поле, что приводит их в движение распространяется со скоростью близкой к скорости света, позволяя электрическим сигналам быстро проходить по проводам.

Ток вызывает ряд наблюдаемых эффектов, которые исторически являлись признаком его присутствия. Возможность разложения воды под действием тока от гальванического столба была обнаружена Николсоном и Карлайлом в 1800 году. Этот процесс теперь называется электролиз. Их работа была значительно расширена Майклом Фарадеем в 1833 году. Ток, протекая через сопротивление, вызывает локализованный нагрев. Данный эффект Джеймс Джоуль описал математически в 1840 году. Одно из наиболее важных открытий, касающихся тока было сделано случайно Эрстедом в 1820 году, когда при подготовке лекции, он обнаружил, что ток, протекающий по проводу, вызвал поворот стрелки магнитного компаса. Так он открыл электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных выбросов, генерируемых электрической дугой, достаточно высок для получения электромагнитных помех, которые могут нанести ущерб работе смежного оборудования.Он обнаружил электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных излучений, генерируемых электрической дугой достаточно высок, чтобы производить электромагнитные помехи, которые могут вызвать помехи в работе находящегося поблизости оборудования.

Для технического или бытового применения ток часто характеризуется как либо постоянный (DC), либо переменный (AC). Эти термины относятся к тому, как ток изменяется во времени. Постоянный ток, производимый, например, батареей и требуемый для большинства электронных устройств, является однонаправленным потоком от положительного потенциала цепи к отрицательному. Если этот поток, что чаще случается, переносится электронами, они будут перемещаться в противоположном направлении. Переменным током называется любой ток, который непрерывно меняет направление, он почти всегда имеет форму синусоиды. Переменный ток пульсирует назад и вперед внутри проводника без перемещения заряда на какое-нибудь конечное расстояние за длительный промежуток времени. Усредненное по времени значение переменного тока равно нулю, но он доставляет энергию сначала в одном направлении, а затем в обратном. Переменный ток зависит от электрических свойств, которые не проявляют себя при стационарном режиме постоянного тока, например, от индуктивности и емкости. Эти свойства, однако, могут проявить себя, когда схема подвергается переходным процессам, например, при первоначальной подаче энергии.

Электрическое поле

Понятие электрического поля было введено Майклом Фарадеем. Электрическое поле создается заряженным телом в пространстве, которое окружает тело, и приводит к силе, действующей на любые другие заряды, расположенные в поле. Электрическое поле действует между двумя зарядами аналогично гравитационному полю, действующему между двумя массами, и также простирается до бесконечности и обратно пропорционально квадрату расстояния между телами. Тем не менее, есть существенная разница. Сила тяжести всегда притягивает, заставляя соединиться две массы, в то время как электрическое поле может привести либо притяжению, либо к отталкиванию. Так как крупные тела, такие как планеты в целом имеют нулевой суммарный заряд, их электрическое поле на расстоянии обычно равно нулю. Таким образом, сила тяжести является доминирующей силой на больших расстояниях во Вселенной, несмотря на то, что сама она гораздо слабее.

Электрическое поле, как правило, различается в различных точках пространства, а его напряженность в любой точке определяется как сила (отнесенная к единице заряда), которую будет испытывать неподвижный, ничтожно малый заряд, если его поместить в эту точку. Абстрактный заряд, называемый "пробным зарядом", должен иметь исчезающе малое значение, чтобы его собственным электрическим полем, нарушающим основное поле, можно было пренебречь, а также должен быть стационарным (неподвижным), чтобы предотвратить влияние магнитных полей. Поскольку электрическое поле определяется в терминах силы, а сила является вектором, то электрическое поле также является вектором, имеющим как величину, так и направление. А если конкретнее, то электрическое поле является векторным полем.

Учение о электрических полях, создаваемых неподвижными зарядами, называется электростатикой. Поле может быть визуализировано с помощью набора воображаемых линий, направление которых в любой точке пространства совпадает с направлением поля. Это понятие было введено Фарадеем, и термин «силовые линии» до сих пор иногда встречается. Линии поля - это пути, по которым точечный положительный заряд будет совершать движение под действием поля. Они, однако, являются абстрактным, а не физическим объектом, а поле пронизывает всё промежуточное пространство между линиями. Линии поля, исходящие из стационарных зарядов, имеют несколько ключевых свойств: во-первых, они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах; во-вторых, они должны входить в любой идеальный проводник под прямым углом (нормально), и в-третьих, они никогда не пересекаются и не замыкаются сами на себя.

Полое проводящее тело содержит весь свой заряд на своей внешней поверхности. Поэтому поле равно нулю во всех местах внутри тела. На этом принципе работает клетка Фарадея - металлическая оболочка, которая изолирует свое внутреннее пространтсво от внешних электрических воздействий.

Принципы электростатики имеют важное значение при проектировании элементов высоковольтного оборудования. Существует конечный предел напряженности электрического поля, которая может быть выдержана любом материалом. Выше этого значения происходит электрический пробой, который вызывает электрическую дугу между заряженными частями. Например, в воздухе электрический пробой наступает при небольших зазорах при напряженности электрического поля, превышающем 30 кВ на сантиметр. При увеличении зазора предельная напряженность пробоя снижается, примерно, до 1 кВ на сантиметр. Наиболее заметное подобное естественное явление - это молния. Она возникает, когда заряды разделяются в облаках восходящими колоннами воздуха, и электрическое поле в воздухе начинает превышать значение пробоя. Напряжение большого грозового облака может достигать 100 МВ и иметь величину энергии разряда 250 кВт-час.

На величину напряженности поля сильно влияют находящиеся поблизости проводящие объекты, и напряженность особенно велика, когда полю приходится огибать заостренные объекты. Этот принцип используется в громоотводах, острые шпили которых принуждают молнии разряжаться в них, а не в здания, которые они защищают.

Электрический потенциал

Понятие электрического потенциала тесно связано с электрическим полем. Небольшой заряд, помещенный в электрическое поле, испытывает силу, и для того, чтобы переместить заряд против этой силы, требуется совершить работу. Электрический потенциал в любой точке определяется как энергия, которую необходимо затратить, чтобы крайне медленно переместить единичный пробный заряд с бесконечности до этой точки. Потенциал обычно измеряется в вольтах, и потенциал в один вольт - это потенциал, при котором необходимо затратить один джоуль работы, чтобы переместить заряд в один кулон из бесконечности. Это формальное определение потенциала имеет небольшое практическое применение, и более полезным является понятие электрической разности потенциалов, то есть энергия, необходимая для перемещения единицы заряда между двумя заданными точками. Электрическое поле имеет одну особенность, оно является консервативным, что означает, что путь, пройденный пробным зарядом не имеет никакого значения: на прохождение всевозможных путей между двумя заданными точками всегда будет затрачена одна и та же энергия, и, таким образом, существует единственное значение разности потенциалов между двумя положениями. Вольт настолько сильно закрепился в качестве единицы измерения и описания разности электрических потенциалов, что термин вольтаж используется широко и повседневно.

Для практических целей полезно определить общую точку отсчета, относительно которой потенциалы могут быть выражены и сравниваться. Хотя, она может находиться и на бесконечности, гораздо более практично использовать в качестве нулевого потенциала саму Землю, которая во всех местах, как предполагается, имеет один и тот же потенциал. Эту точка отсчета, естественно, обозначают как "земля" (ground). Земля является бесконечным источником равного количества положительных и отрицательных зарядов и, следовательно, она электрически нейтральна и незаряжаема.

Электрический потенциал является скалярной величиной, то есть, он имеет только значение и не имеет направления. Его можно рассматривать как аналог высоты: подобно тому, как выпущенный объект будет падать посредством разности высот, вызванной гравитационным полем, так и заряд будет "падать" посредством напряжения, вызванного электрическим полем. Как на картах обозначается рельеф посредством контурных линий, соединяющих точки одинаковой высоты, так и набор линий, соединяющих точки равного потенциала (известные как эквипотенциали) могут быть прорисованы вокруг электростатически заряженного объекта. Эквипотенциали пересекают все силовые линии под прямым углом. Они также должны лежать параллельно поверхности проводника, в противном случае будет производиться сила, перемещающая носители зарядов по эквипотенциальной поверхности проводника.

Электрическое поле формально определяется как сила, оказываемая на единицу заряда, но понятие потенциала предоставляет более полезное и эквивалентное определение: электрическое поле - это локальный градиент электрического потенциала. Как правило, оно выражается в вольтах на метр, а направление вектора поля является линией наибольшего изменения потенциала, то есть в направлении ближайшего расположения другой эквипотенциали.

Электромагниты

Открытие Эрстедом в 1821 году того факта, что магнитное поле существует вокруг всех сторон провода, несущего электрический ток, показало, что существует прямая связь между электричеством и магнетизмом. Более того, взаимодействие казалось отличающимся от гравитационных и электростатических сил, двух сил природы, тогда известных. Сила действовала на стрелку компаса, не направляя ее к проводу с током или от него, а действовала под прямым углом к нему. Немного неясными словами "электрический конфликт имеет вращающее поведение" Эрстед выразил своё наблюдение. Эта сила также зависела от направления тока, ибо, если ток менял направление, то магнитная сила меняла его тоже.

Эрстед не в полной мере смог понять свое открытие, но наблюдаемый им эффект был взаимным: ток оказывает силовое воздействие на магнит, и магнитное поле оказывает силовое воздействие на ток. Феномен был в дальнейшем изучен Ампером, который обнаружил, что два параллельных провода с током, оказывают силовое действие друг на друга: два провода, с протекающими по ним токами в одном и том же направлении, притягиваются друг к другу, в то время как провода, содержащие токи в противоположных направлениях друг от друга, отталкиваются. Это взаимодействие происходит посредством магнитного поля, которое каждый ток создает, и на основе этого явления определяется единица измерения тока - Ампер в международной системе единиц.

Эта связь между магнитными полями и токами является чрезвычайно важной, поскольку она привела к изобретению Майклом Фарадеем электродвигателя в 1821 году. Его униполярный двигатель состоял из постоянного магнита, помещенного в сосуд с ртутью. Ток пропускался по проводу, подвешенному на шарнирном подвесе над магнитом и погруженному в ртуть. Магнит оказывал тангенциальную силу на провод, что заставляло последний вращаться вокруг магнита до тех пор, пока в проводе поддерживался ток.

Эксперимент, проведенный Фарадеем в 1831 году, показал, что провод, движущийся перпендикулярно магнитному полю, создавал разность потенциалов на концах. Дальнейший анализ этого процесса, известного как электромагнитная индукция, позволил ему сформулировать принцип, теперь известный как закон индукции Фарадея, что разность потенциалов, наведенная в замкнутом контуре пропорциональна скорости изменения магнитного потока пронизывающего контур. Разработка этого открытия позволили Фарадею изобрести первый электрический генератор, в 1831 году, в котором преобразуется механическая энергия вращающегося медного диска в электрическую энергию. Диск Фарадея был неэффективным и не использовался в качестве практического генератора, но он показал возможность выработки электроэнергии с использованием магнетизма, и эта возможность была взята на вооружение теми, кто последовал за его разработками.

Способность химических реакций производить электроэнергию, и, обратная способность электроэнергии производить химические реакцие имеет широкий спектр применений.

Электрохимия всегда была важной частью учения о электричестве. Из первоначального изобретения вольтова столба, гальванические элементы эволюционировали в самые разнообразные типы батарей, гальванические и электролизные элементы. Алюминий получают в огромных количествах электролизным способом, и во многих портативных электронных устройствах используются перезаряжаемые источники электроэнергии.

Электрические схемы

Электрическая цепь представляет собой соединение электрических компонентов таким образом, что электрический заряд, вынужденный проходить по замкнутой траектории (контуру), обычно выполняет ряд некоторых полезных задач.

Компоненты в электрической цепи могут принимать различные формы, выступая в роли таких элементов, как резисторы, конденсаторы, выключатели, трансформаторы и электронные компоненты. Электронные схемы содержат активные компоненты, такие как полупроводники, которые обычно работают в нелинейном режиме и требуют применения к ним комплексного анализа. Наиболее простыми электрическими компонентами являются те, которые называются пассивными и линейными: хотя они могут временно хранить энергию, они не содержат ее источников и работают в линейном режиме.

Резистор, пожалуй, самый простой из пассивных элементов схемы: как предполагает его название, он сопротивляется току, протекающему через него, рассеивая электроэнергию в виде тепла. Сопротивление является следствием движения заряда через проводник: в металлах, например, сопротивление в первую очередь связано со столкновениями электронов и ионов. Закон Ома является основным законом теории цепей, и гласит, что ток, проходящий через сопротивление прямо пропорционален разности потенциалов на нем. Сопротивление большинства материалов относительно постоянно в широком диапазоне температур и токов; материалы, удовлетворяющие этим условиям, известны как "омические". Ом - единица сопротивления, была названа в честь Георга Ома и обозначается греческой буквой Ω. 1 ом - это сопротивление, которое создает разность потенциалов в один вольт при пропускании через него тока величиной в один ампер.

Конденсатор является модернизацией лейденской банки и представляет собой устройство, которое может хранить заряд, и тем самым накапливать электрическую энергию в создающемся поле. Он состоит из двух проводящих пластин, разделенных тонким изолирующим слоем диэлектрика; на практике это пара тонких полосок металлической фольги, смотанных вместе, для увеличения площади поверхности в единице объема и, следовательно, емкости. Единицей емкости является фарад, названный в честь Майкла Фарадея и обозначается символом F: один фарад является емкость, которая создает разность потенциалов в один вольт, при хранении заряда в один кулон. Через конденсатор, подключенный к источнику питания вначале протекает ток, так как в конденсаторе происходит накопление заряда; этот ток будет, однако уменьшаться по мере того, как конденсатор будет заряжаться, и в конце концов станет равным нулю. Конденсатор поэтому не пропускает постоянный ток, а блокирует его.

Индуктивность является проводником, как правило, мотком провода, которая хранит энергию в магнитном поле, возникающем при прохождении тока через неё. При изменении тока, магнитное поле также изменяется, создавая напряжение между концами проводника. Индуцированное напряжение пропорционально скорости изменения тока. Коэффициент пропорциональности называется индуктивностью. Единица индуктивности - генри, названна в честь Джозефа Генри, современника Фарадея. Индуктивность в один генри - это индуктивность, которая вызывает разность потенциалов в один вольт, при скорости изменения тока, проходящего через неё, в один ампер в секунду. Поведение индуктивности противоположенное поведению конденсатора: она будет свободно пропускать постоянный и блокировать быстро меняющийся ток.

Электрическая мощность

Электрическая мощность - это скорость, с которой электрическая энергия передается электрической цепью. Единица СИ мощности - ватт, равный одному джоулю в секунду.

Электрическая мощность как и механическая является скоростью выполнения работы, измеряется в ваттах и обозначается буквой P. Термин потребляемая мощность, используемый в просторечии, означает "электрическую мощность в ваттах." Электрическая мощность в ваттах, производимая электрическим током I, равным прохождению заряда Q кулон каждые t секунд через электрическую разность потенциалов (напряжение) V равна

P = QV/t = IV

  • Q - электрический заряд в кулонах
  • t - время в секундах
  • I - электрический ток в амперах
  • V - электрический потенциал или напряжение в вольтах

Генерация электроэнергии часто производится с помощью электрогенераторов, но также может производиться химическими источниками, такими как электрические батареи или другими способами с помощью самых разнообразных источников энергии. Электрическая мощность, как правило, поставляется на предприятия и в дома электроэнергетическими компаниями. Оплата за электроэнергию обычно происходит за киловатт-час (3,6 МДж), который является произведенной мощностью в киловаттах, умноженной на время работы в часах. В электроэнергетике измерения мощности производят с использованием счетчиков электроэнергии, которые запоминают количество общей электрической энергии, отдаваемой клиенту. В отличие от ископаемого топлива, электроэнергия является низкоэнтропийной формой энергии и может быть преобразована в энергию движения или многие другие виды энергии с высокой эффективностью.

Электроника

Электроника имеет дело с электрическими цепями, которые включают в себя активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральных схемы, и связанные с ними пассивные элементы и элементы коммутации. Нелинейное поведение активных компонентов и их способность контролировать потоки электронов позволяет усиливать слабые сигналы и широко использовать электронику в обработке информации, телекоммуникации и обработке сигналов. Способность электронных устройств работать в качестве переключателей позволяет проводить цифровую обработку информации. Элементы коммутации, такие как печатные платы, технологии компоновки и другие разнообразные формы коммуникационной инфраструктуры дополняют функциональные возможности схемы и превращают разнородные компоненты в обычную рабочую систему.

Сегодня большинство электронных устройств используют полупроводниковые компоненты для осуществления электронного управления. Изучение полупроводниковых приборов и связанных с ними технологий рассматривается как отрасль физики твердого тела, тогда как проектирование и конструирование электронных схем для решения практических задач относятся к области электроники.

Электромагнитные волны

Работы Фарадея и Ампера показали, что изменяющееся во времени магнитное поле порождало электрическое поле, а изменяющееся во времени электрическое поле являлось источником магнитного поля. Таким образом, когда одно поле меняется во времени, то всегда индуцируется другое поле. Такое явление обладает волновым свойствами и естественно называется электромагнитной волной. Электромагнитные волны были теоретически проанализированы Джеймсом Максвеллом в 1864 году. Максвелл разработал ряд уравнений, которые могли однозначно описать взаимосвязь между электрическим полем, магнитным полем, электрическим зарядом и электрическим током. Он смог к тому же доказать, что такая волна обязательно распространяется со скоростью света, и, таким образом, и свет сам является формой электромагнитного излучения. Разработка законов Максвелла, которые объединяют свет, поля и заряд, является одним из важнейших этапов в истории теоретической физики.

Таким образом, работа многих исследователей позволила использовать электронику для преобразования сигналов в высокочастотные колебательные токи, а через соответствующим образом сформированные проводники электричество позволяет передавать и принимать эти сигналы посредством радиоволн на очень большие расстояния.

Производство и использование электрической энергии

Генерация и передача электрического тока

В 6 веке до н. э. греческий философ Фалес Милетский экспериментировал с янтарными стержнями, и эти эксперименты стали первыми исследованиями в области производства электрической энергии. Пока этот метод, теперь известный как трибоэлектрический эффект, мог только поднимать легкие предметы и генерировать искры, он был крайне неэффективен. С изобретением вольтова столба в восемнадцатом веке жизнеспособный источник электроэнергии стал доступным. Вольтов столб и его современный потомок - электрическая батарея, хранит энергию в химическом виде и выдает её в виде электрической энергии по требованию. Батарея является универсальным и очень распространенным источником питания, который идеально подходит для многих применений, но энергия, хранящаяся в ней, конечна, и как только она расходуется, батарею необходимо утилизировать или заряжать. Для больших потребностей электрическая энергия должна генерироваться и передаваться непрерывно по проводящим линиям электропередачи.

Электроэнергия обычно генерируется электромеханическими генераторами, приводимыми в движение паром, получаемым от сжигания ископаемого топлива, или теплом, выделяемым в ядерных реакциях; или из других источников, таких как кинетическая энергия, извлеченная из ветра или проточной воды. Современная паровая турбина, разработанная сэром Чарльзом Парсонсом в 1884 году, сегодня производит около 80 процентов электроэнергии в мире с использованием различных источников тепла. Такие генераторы не имеют никакого сходства с униполярным генератором - диском Фарадея 1831 года, но они по-прежнему полагаться на его электромагнитный принцип, согласно которому проводник, сцепляясь с изменяющимся магнитным полем, индуцирует разность потенциалов на своих концах. Изобретение в конце ХIХ века трансформатора означало, что электрическая энергия может передаваться более эффективно при более высоком напряжении, но более низком токе. Эффективная электрическая передача означает, в свою очередь, что электроэнергия может производиться на централизованных электростанциях с выгодой от масштабной экономии, а затем передаваться на относительно большие расстояния туда, где в ней есть необходимость.

Поскольку электрическая энергия не может быть легко сохранена в количествах, достаточных для удовлетворения потребностей в национальном масштабе, её должно производиться в любое время столько, сколько в данный момент её требуется. Это обязывает энергокомпании тщательно прогнозировать свои электрические нагрузки и постоянно согласовывать эти данные с электростанциями. Некоторое количество генерирующих мощностей должно всегда храниться в запасе в качестве подушки безопасности для электросетей на случай резкого повышения спроса на электроэнергию.

Спрос на электроэнергию растет с большой скоростью по мере модернизации страны и развития ее экономики. Соединенные Штаты демонстрировали 12-процентный рост спроса в течение каждого года первых трех десятилетий ХХ века. Такой темп роста в настоящее время наблюдается в странах с формирующейся экономикой, таких как Индия или Китай. Исторически темпы роста спроса на электроэнергию опережают темпы роста спроса на другие виды энергии.

Экологические проблемы, связанные с производством электроэнергии, привели к усилению внимания к производству электроэнергии из возобновляемых источников, в частности на ветряных и гидроэлектростанциях. Несмотря на то, что можно ожидать продолжения дебатов о воздействии на окружающую среду различных средств производства электроэнергии, её окончательная форма относительно чистая.

Способы применения электричества

Передача электричества является весьма удобным способом передачи энергии, и она была адаптирована к огромному, и продолжающему расти, количеству применений. Изобретение практической лампы накаливания в 1870-х годах привело к тому, что освещение стало одним из первых массово доступных применений электроэнергии. Несмотря на то, что электрификация подразумевала собой определенные риски, замена открытого пламени газового освещения значительно снизила опасность возгорания внутри домов и фабрик. Во многих городах были созданы коммунальные предприятия, ориентированные на растущий рынок электрического освещения.

Нагревающий резистивный эффект Джоуля используется в нитях ламп накаливания и также находит более непосредственное применение в системах электрического отопления. Хотя этот метод отопления универсальный и управляемый, его можно считать расточительным, поскольку для большинства способов электрогенерации уже потребовалось производство тепловой энергии на электростанции. В ряде стран, таких как Дания, выпустили законы, ограничивающие или запрещающие применение резистивного электрического нагрева в новых зданиях. Электричество, однако, до сих пор остается весьма практичным источником энергии для отопления и охлаждения, причем кондиционеры или тепловые насосы представляют собой растущий сектор спроса на электроэнергию для отопления и охлаждения, последствия которого коммунальные предприятия все в большей степени обязаны учитывать.

Электричество используется в сфере телекоммуникаций, и на самом деле электрический телеграф, коммерческое использование которого было продемонстрировано в 1837 году Куком и Уитстоном, было одним из самых ранних электрических телекоммуникационных применений. При строительстве первых межконтинентальных, а затем трансатлантической, телеграфных систем в 1860-х годах, электричество позволило обеспечивать связь в течение нескольких минут со всем земном шаром. Оптоволоконная и спутниковая связь заняли часть рынка систем связи, однако можно ожидать, что электроэнергия будет оставаться важной частью этого процесса.

Наиболее очевидное использование эффектов электромагнетизма происходит в электродвигателе, который представляет собой чистое и эффективное средство движущей силы. Стационарный двигатель, такой как лебедка, легко обеспечить электропитанием, но двигателю для мобильного применения, такого как электрическое транспортное средство, необходимо либо перемещать вместе с собой источники питания, такие как батареи, либо собирать ток скользящим контактом, известным как пантограф.

Электронные устройства используют транзистор, пожалуй, одно из важнейших изобретений ХХ века, который является фундаментальным строительным блоком всех современных схем. Современная интегральная схема может содержать несколько миллиардов миниатюризованных транзисторов на площади всего несколько квадратных сантиметров.

Электричество также используется в качестве источника топлива для общественного транспорта, в том числе в электрических автобусах и поездах.

Влияние электричества на живые организмы

Действие электрического тока на организм человека

Напряжение, приложенное к человеческому телу, вызывает прохождение электрического тока через ткани, и хотя это отношение нелинейно, но чем большее напряжение приложено, тем больший оно вызывает ток. Порог восприятия варьируется в зависимости от частоты питания и местом прохождения тока, он составляет приблизительно от 0,1 мА до 1 мА для электричества сетевой частоты, хотя и ток, настолько малый, как один микроампер, может быть обнаружен как эффект электровибрации при определенных условиях. Если ток достаточно большой, то он может вызвать сокращение мышц, аритмию сердца, а также ожоги тканей. Отсутствие каких-либо видимых признаков того, что проводник находится под напряжением, делает электричество особенно опасным. Боль, вызванная электрическим током может быть интенсивной, что приводит к тому, что электричество иногда используют в качестве метода пытки. Смертная казнь, приведенная в исполнение поражением электрическим током, называется казнью на электрическом стуле (electrocution). Казнь на электрическом стуле до сих пор остается средством судебного наказания в некоторых странах, хотя его использование стало более редким в последнее время.

Электрические явления в природе

Электричество не является изобретением человека, оно может наблюдаться в нескольких формах в природе, заметным проявлением которого является молния. Многие взаимодействия, знакомые на макроскопическом уровне, такие как прикосновение, трение или химическая связь, обусловлены взаимодействиями между электрическими полями на атомном уровне. Магнитное поле Земли, как полагают, возникает из-за естественного производства циркулирующих токов в ядре планеты. Некоторые кристаллы, такие как кварц, или даже сахар, способны создавать разность потенциалов на своих поверхностях, когда подвергаются внешнему давлению. Это явление, известное как пьезоэлектричество, от греческого piezein (πιέζειν), что означает "нажать", было обнаружено в 1880 году Пьером и Жаком Кюри. Этот эффект обратим, и когда пьезоэлектрический материал подвергается воздействию электрического поля, происходит небольшое изменение его физических размеров.

Некоторые организмы, такие как акулы, способны обнаруживать и реагировать на изменения электрических полей, эта способность известна как электрорецепция. В то же время другие организмы, именуемые электрогенными, способны генерировать напряжения сами, что служит им в качестве оборонительного или хищного оружия. Рыбы отряда гимнотообразных, самым известным представителем которого является электрический угорь, могут обнаруживать или оглушать свою добычу с помощью высокого напряжения, генерируемого видоизмененными мышечными клетками, называемыми электричесикими клетками (electrocytes). Все животные передают информацию по клеточным мембранам импульсами напряжения, называемыми потенциалами действия, в чью функцию входит обеспечение нервной системы связью между нейронами и мышцами. Поражение электрическим током стимулирует эту систему, и вызывает сокращение мышц. Потенциалы действия также отвечают за координацию деятельности определенных растений.

В 1850 году Уильям Гладстон спросил ученого Майкла Фарадея, в чем ценность электричества. Фарадей ответил: "В один прекрасный день, сэр, вы сможете обложить его налогом».

В 19-м и начале 20-го века, электричество не было частью повседневной жизни многих людей, даже в промышленно развитом западном мире. Популярная культура того времени, соответственно, часто изображала его как таинственную, квази-магическую силу, которая может умертвлять живых, воскрешать мертвых или иным образом изменять законы природы. Такой взгляд начал царить с опытов Гальвани 1771 года, в которых демонстрировались ноги мертвых лягушек дергающимися при применении животного электричества. Об "оживлении" или реанимации очевидно мертвых или утопленников было сообщено в медицинской литературе вскоре после работы Гальвани. Об этих сообщениях стало известно Мэри Шелли, когда она принялась за написание Франкенштейна (1819), хотя она и не указывает на такой метод оживления монстра. Оживление монстров с помощью электричества стало актуальной темой фильмов ужасов позже.

По мере того, как углублялось общественное знакомство с электричеством, как источником жизненной силы второй промышленной революции, его обладатели чаще показывались в положительном свете, например, электромонтажники, про которых сказано "смерть сквозь перчатки им леденит пальцы, сплетающие провода" в стихотворении Редьярда Киплинга 1907 года "Сыновья Марфы". Разнообразные транспортные средства с электрическим приводом заняли видное место в приключенческих рассказах Жюля Верна и Тома Свифта. Специалисты в области электроэнергетики, будь то вымышленные или реальные - в том числе ученые, такие как Томас Эдисон, Чарльз Штайнмец или Никола Тесла - широко воспринимались как кудесники, наделенные волшебными полномочиями.

По мере того, как электричество переставало быть новинкой и становилось необходимостью в повседневной жизни во второй половине 20-го века, оно обратило к себе особое внимание со стороны популярной культуры только тогда, когда оно переставало поступать, что являлось событием, которое обычно сигнализирует о бедствии. Люди, которые поддерживают его поступление, такие как безымянный герой песни Джимми Уэбба "Монтер из Уичито" (1968), все чаще представлялись в качестве героических и волшебных персонажей.

Похожие публикации