Получение холода из тепла. Как получить тепло из холода с помощью тепловых труб и капиллярных явлений. Физические основы получения искусственного холода

Физическая природа тепла и холода одинакова, разница состоит только в скорости движения молекул и атомов. В более нагретом теле скорость движения больше, чем в менее нагретом. При подводе к телу тепла движение возрастаем, при отнятии тепла уменьшается. Таким образом, тепловая энергии есть внутренняя энергия движения молекул и атомов.

Охлаждение тела – это отвод от него тепла, сопровождаемый понижением температуры. Самый простой способ охлаждения – теплообмен между охлаждаемым телом и окружающей средой – наружным воздухом, водой, почвой. Но этим способом, даже при самом совершенном теплообмене, температуру охлаждаемого тела можно понизить только до температуры окружающей среды. Такое охлаждение называется естественным. Охлаждение тела ниже температуры окружающей среды называется искусственным. Для него используется скрытая теплота, поглощаемая телами при изменении их агрегатного состояния.

Существует несколько способов получения искусственного холода. Самый простой из них – охлаждение при помощи льда, таяние которого сопровождается поглощением довольно большого количества тепла. Если теплопритоки извне малы, а теплопередающая поверхность льда относительно велика, то температуру в помещении можно понизить почти до 0˚С. Практически в помещении, охлаждаемом льдом, температуру воздуха удается поддерживать лишь на уровне 5 -8 ˚С.

При охлаждении водным льдом происходит изменение его агрегатного состояния – плавление. Холодопроизводительность, или охлаждающая способность чистого водного льда, называется удельной теплотой плавления. Она равна 335 кДж/кг·градус.

Водный лед применяется для охлаждения и сезонного хранения продовольственных товаров, овощей, фруктов в климатических зонах с продолжительным холодным периодом, где в естественных условиях в зимний период его легко можно заготовить.

Водный лед в качестве охлаждающего средства применяется в специальных ледниках и на ледяных складах. Ледники бывают с нижней загрузкой льда (ледник – погреб) и с боковой – карманного типа.

Ледяное охлаждение имеет существенные недостатки: температура хранения ограничена температурой таяния льда (обычно температура воздуха на ледяных складах 5-8 ºС), в ледник необходимо закладывать количество льда достаточное на весь период хранения и добавлять по мере необходимости, значительные затраты труда на заготовку и хранение водного льда; большие размеры помещения для льда, превышающие примерно в 3 раза размеры помещения для продуктов; значительные затраты труда на соблюдение необходимых требований, предъявляемых к хранению пищевых продуктов и отводу талой воды.

Льдосоляное охлаждение производится с применением дробленного водного льда и соли. Благодаря добавлению соли скорость таяния льда увеличивается, а температура таяния льда опускается ниже. Это объясняется тем, что добавление соли вызывает ослабление молекулярного сцепления и разрушения кристаллических решеток льда. Таяние льдосоляной смеси протекает с отбором тепла от окружающей среды, в результате чего окружающий воздух охлаждается и температура его понижается. С повышением содержания соли в льдосоляной смеси температура плавления ее понижается. Раствор соли с самой низкой температурой таяния называется эвтектическим, а температура ее таяния – криогидратной точкой. Криогидратная точка для льдосоляной смеси с поваренной солью (Н 2 О – NaCl) – 21,2 ºС при концентрации соли в растворе 23,1 % по отношению к общему весу смеси, что примерно равно 30 кг соли на 100 кг льда. При дальнейшем повышении концентрации соли происходит не понижение, а повышение температуры таяния льдосоляной смеси (рис. 5.1).


Рисунок 5.1 - Зависимость температуры затвердевания раствора от концентрации соли в воде.

Эвтектический раствор применяют для зероторного охлаждения. Для этого в зероторы – наглухо запаянные формы заливают эвтектический раствор поваренной соли и замораживают их. Замороженные зероторы используют для охлаждения прилавков, шкафов, охлаждаемых переносных сумок – холодильников и т.д.

Охлаждение сухим льдом основано на свойстве твердой углекислоты сублимировать, т.е. при поглощении тепла переходить из твердого состояния в газообразное, минуя жидкое состояние. Физические свойства сухого льда следующие: температура сублимации при атмосферном давлении – 78,9ºС, теплота сублимации 574,6 кДж/кг.

Сухой лед обладает следующими преимуществами по сравнению с водным:

Можно получать более низкую температуру;

Охлаждающее действие 1кг сухого льда почти в два раза больше, чем 1 кг водного льда;

При охлаждении не возникает сырости, кроме того при сублимации сухого льда образуется газообразная углекислота, которая является консервирующим средством, способствующим лучшему сохранению продуктов.

Сухой лед применяется для перевозки замороженных продуктов, охлаждения фасованного мороженого, замороженных фруктов и овощей. Получают сухой лед искусственным путем на углекислотных заводах, хранят его в специальных контейнерах с усиленной теплоизоляцией.

Получение искусственного холода с помощью льда, а также с помощью охлаждающих смесей имеет существенные недостатки: трудоемкость процессов заготовки льда, его доставки, трудность автоматического регулирования, ограниченные температурные возможности.

Термоэлектрическое охлаждение основано на эффекте Пельтье (открыт Жаном Пельтье в 1834 г.), сущность которого заключается в том, что под влиянием проходящего электрического тока по цепи из 2 разных проводников или полупроводников на спаях появляются разные температуры (рис. 5.2). Если температура холодного спая ниже температуры окружающей среды, то его можно использовать как охладитель. Значительную разность температур на спаях дают пары, составленные из полупроводников, изготовленных из соединений висмута, сурьмы, селена с добавлением небольшого количества присадок.


Рисунок 5.2 - Принципиальная схема термоэлектрического охлаждения.

Преимущество термоэлектрического охлаждения – отсутствие движущихся частей, рабочего тела, бесшумность, надежность и долговечность работы, недостаток – большой расход электроэнергии. Термоэлектрические охладительные устройства используются в некоторых типах холодильных шкафов и охлаждаемых баров.

Учитывая недостатки всех вышеизложенных способов охлаждения, наиболее распространенным и удобным в эксплуатационном отношении способом охлаждения является машинное охлаждение.

Машинное охлаждение – способ получения холода за счет изменения агрегатного состояния хладагента, кипения его при низких температурах с отводом от охлаждаемого тела или среды необходимой для этого теплоты парообразования. Для последующей конденсации паров хладагента требуется предварительное повышение их давления и температуры.

Широкое применение машинного охлаждения в торговле объясняется рядом его эксплуатационных свойств и экономических преимуществ: автоматическое поддержание постоянной температуры хранения в зависимости от вида продуктов, высокий удельный вес использования полезной емкости для охлаждения, незначительные затраты на эксплуатацию, техническое обслуживание и ремонт, удобство использования и санитарной обработки.

Комплекс механизмов и аппаратов, осуществляющих холодильный цикл, называется холодильной машиной. На предприятиях торговли используются компрессионные холодильные машины, в которых пары хладагента подвергаются сжатию в компрессоре с затратой механической энергии.

Изобретение: в холодильной технике. Сущность изобретения: холод получают путем сжатия и расширения хладагента на основе фтора. В качестве хладагента используют неорганические гексафториды или их смеси.

Изобретение относится к холодильной технике и может быть использовано в газовых энергохолодильных машинах и тепловых насосах, содержащих компрессор и детандер, преимущественно, турбинного или центробежного типа. Из уровня техники известен способ получения холода в холодильной установке путем сжатия газообразного хладагента в турбокомпрессоре и расширения в турбодетандере (см. авт. св. СССР N 169543, кл. F 25 B 11/00, 1965; авт. св. СССР N 183773, кл. F 25 B 9/00, 1966; авт.св. СССР N 1433193, кл. F 25 B 9/00, 1990, авт.св. СССР N 1778468, кл. F 25 B 9/00, 1992 или патент Великобритании N 2174792, кл. F 4 H 1986). При этом в качестве газообразного хладагента используются воздух, азот, водород, гелий, ксенон, фреоны или смеси газов, как, например, в авт.св. СССР N 565052, кл. F 25 B 9/00, 1977; авт.св. СССР N 802348, кл. F 25 B 9/00,1981. Наиболее близким из известных к изобретению является способ получения холода в холодильной установке путем сжатия газообразного хладагента в турбокомпрессоре и расширения в турбодетандере (см. авт.св. СССР N 473740, кл. F 25 B 11/00, 1975), в котором в качестве хладагента используется смесь газов на основе соединений фтора, содержащая октафторциклобутан ФС-318 (C 4 F 8) и дифторхлорметан Ф-22 (CHClF 2). Однако, данный хладагент оказывает экологически неблагоприятное воздействие на озоновый слой. Изобретение направлено на расширение выбора газообразных хладагентов для энергохолодильных машин или тепловых насосов с высокой теплоемкостью, обеспечивающих повышение хладопроизводительность и снижение массогабаритных параметров турбомашин, используемых в качестве компрессора и расширителя (детандера) при преимущественно получении холода. Решение поставленной задачи обеспечивается тем, что в способе получения холода в холодильной установке путем сжатия газообразного хладагента на основе соединений фтора в турбокомпрессоре и расширения в турбодетандере в качестве хладагента используются неорганические гексофториды или их смесь. Использование тяжелых неорганических гексофторидов в качестве хладагента при расширении выбора рабочей среды для обеспечения различных режимных параметров холодильной машины или теплового насоса позволяет увеличить холодопроизводительность в силу их высокой теплоемкости и плотности и снизить габариты турбокомпрессора и турбодетандера за свет возможности работы при невысоких оборотах ротора. При реализации способа независимо от схемного выполнения конкретной холодильной установки или теплового насоса по рабочему контуру циркулирует в газообразном состоянии неорганический гексофторид, например XeF 6 ; WF 6 ; MoF 6 ; UF 6 , или смесь указанных газов. Конкретный вид соединения гексофторида при этом определяется в зависимости от оптимального сочетания требуемых режимных параметров с теплофизическими свойствами хладагента расчетным путем.

Формула изобретения

Способ получения холода в холодильной установке путем сжатия газообразного хладагента на основе соединений фтора и его расширения, отличающийся тем, что в качестве хладагента использованы неорганические гексафториды XeF 6 , WF 6 , MoF 6 , UF 6 или их смеси.

Похожие патенты:

Изобретение относится к области холодильной техники, в частности, к турбокомпрессорным установкам и может быть использовано для охлаждения или замораживания различной продукции, как в стационарных условиях, так и на транспортных средствах, например, на судах

Изобретение относится к технике компремирования газов, а более конкретно к компрессорами для сжатия паров хладагента и газов, с высокими конечными температурами конца сжатия, и предназначенными для работы в составе промышленных компрессорных цехов во всех областях использования искусственного холода и компремирования воздуха и других газов

Изобретение относится к холодильной технике, а более конкретно к способам охлаждения (установкам для их осуществления и распределительным коллекторам таких установок), при которых различные продукты или изделия, находящиеся в замкнутом объеме охлаждают с помощью криогенной жидкости, подаваемой в данный объем, нагреваемой, испаряемой и образующей с газовой средой, находящейся в этом объеме различные циркуляционные контуры, омывающие помещенные в объеме продукты или изделия

Процесс понижения температуры тела называется охлаждени­ем. Различают естественное и искусственное охлаждение.

Естественное охлаждение позволяет охладить тело до темпера­туры окружающей среды. Такое охлаждение обеспечивает холод­ная вода или воздух.

Для охлаждения до температуры более низкой, чем температу­ра окружающей среды, применяется искусственное охлаждение, которое можно осуществить с помощью любого физического про­цесса, связанного с отводом теплоты.

Искусственное охлаждение используется при проведении про­цессов абсорбции, кристаллизации, разделения газов, сублима­ционной сушки и кондиционирования воздуха.

С помощью холодильных смесей можно получать довольно низ­кие температуры. Смесь льда и СаС1 2 (до 30 %) позволяет достичь температуры -55 °С. Однако для осуществления охлаждения таким способом требуется много льда и соли, поэтому его применение ограниченно.

В современных холодильных машинах используется свойство ряда низкокипящих сжиженных газов (аммиак, хладоны, диоксид уг­лерода и др.) при испарении поглощать из окружающей среды большое количество теплоты.

Искусственное охлаждение можно разделить на умеренное (до температуры -100 °С) и глубокое (до более низкой температуры).

В промышленности глубокое охлаждение применяют для сжи­жения разделяемых парогазовых и газовых смесей. Полученные таким способом газы широко используются в химической про­мышленности: азот - для получения химических удобрений, кис­лород, метан и этилен - для производства минеральных кислот и т.п.

В установках искусственного холода осуществляют необходи­мое снижение температуры рабочего тела. По агрегатному со­стоянию рабочего тела холодильные установки подразде-


ляют на газовые, газожидкостные, парожидкостные и адсорбционные (с применением твердой фазы).

Искусственное охлаждение в большинстве случаев осуществ­ляется двумя методами:

Испарением низкокипящих жидкостей;

Расширением различных предварительно сжатых газов с по­мощью дросселирования или детандирования.

При испарении низкокипящих жидкостей последние охлажда­ются за счет уменьшения внутренней энергии.

Дросселирование представляет собой процесс расширения газа при его прохождении через сужающее устройство, в результате чего давление газа снижается. Энергия, необходимая для расши­рения газа при дросселировании, когда поступление теплоты из­вне отсутствует, может быть получена только за счет внутренней энергии самого газа. Дроссельный эффект (эффект Джоуля-Том­сона) - это изменение температуры газа при дросселировании в условиях отсутствия теплообмена с окружающей средой.

Детандирование - это расширение газа в расширительной ма­шине - детандере. По своей конструкции этот агрегат аналогичен поршневому компрессору или турбокомпрессору. При детандировании газ охлаждается вследствие снижения внутренней энергии и совершения внешней работы.

Процесс понижения температуры тела называется охлаждени­ем. Различают естественное и искусственное охлаждение.

Естественное охлаждение позволяет охладить тело до темпера­туры окружающей среды. Такое охлаждение обеспечивает холод­ная вода или воздух.

Для охлаждения до температуры более низкой, чем температу­ра окружающей среды, применяется искусственное охлаждение, которое можно осуществить с помощью любого физического про­цесса, связанного с отводом теплоты.

Искусственное охлаждение используется при проведении про­цессов абсорбции, кристаллизации, разделения газов, сублима­ционной сушки и кондиционирования воздуха.

С помощью холодильных смесей можно получать довольно низ­кие температуры. Смесь льда и СаС1 2 (до 30 %) позволяет достичь температуры -55 °С. Однако для осуществления охлаждения таким способом требуется много льда и соли, поэтому его применение ограниченно.

В современных холодильных машинах используется свойство ряда низкокипящих сжиженных газов (аммиак, хладоны, диоксид уг­лерода и др.) при испарении поглощать из окружающей среды большое количество теплоты.

Искусственное охлаждение можно разделить на умеренное (до температуры -100 °С) и глубокое (до более низкой температуры).

В промышленности глубокое охлаждение применяют для сжи­жения разделяемых парогазовых и газовых смесей. Полученные таким способом газы широко используются в химической про­мышленности: азот - для получения химических удобрений, кис­лород, метан и этилен - для производства минеральных кислот и т.п.

В установках искусственного холода осуществляют необходи­мое снижение температуры рабочего тела. По агрегатному со­стоянию рабочего тела холодильные установки подразде-


ляют на газовые, газожидкостные, парожидкостные и адсорбционные (с применением твердой фазы).

Искусственное охлаждение в большинстве случаев осуществ­ляется двумя методами:

Испарением низкокипящих жидкостей;

Расширением различных предварительно сжатых газов с по­мощью дросселирования или детандирования.

При испарении низкокипящих жидкостей последние охлажда­ются за счет уменьшения внутренней энергии.

Дросселирование представляет собой процесс расширения газа при его прохождении через сужающее устройство, в результате чего давление газа снижается. Энергия, необходимая для расши­рения газа при дросселировании, когда поступление теплоты из­вне отсутствует, может быть получена только за счет внутренней энергии самого газа. Дроссельный эффект (эффект Джоуля-Том­сона) - это изменение температуры газа при дросселировании в условиях отсутствия теплообмена с окружающей средой.

Детандирование - это расширение газа в расширительной ма­шине - детандере. По своей конструкции этот агрегат аналогичен поршневому компрессору или турбокомпрессору. При детандировании газ охлаждается вследствие снижения внутренней энергии и совершения внешней работы.

ОСНОВЫ ТЕОРИИ ХОЛОДИЛЬНЫХ МАШИН

Физические основы получения искусственного холода

Тепловая энергия в естественных условиях всегда переходит от тела более нагретого (охлаждаемого) к менее нагретому (охлаждающему). Понижение температуры охлаждаемого тела до температуры окружающей среды не требует специальных условий и происходит самопроизвольно. Понижение температуры тела ниже температуры окружающей среды требует применения искусственных способов.

Искусственное охлаждение основано на различных физических процессах: фазовых превращениях веществ, адиабатном расширении, дросселировании, термоэлект­рическом охлаждении и др.

Фазовые превращения. Сущность охлаждения при фазовых превращениях заключается в том, что кипение жидкостей, плавление твердых тел и сублимация твердых тел (переход из твердого состояния в газообразное, минуя жидкое) могут происходить только при подводе к этим телам тепловой энергии. Если температура кипения жидкости, плавления или сублимации твердого тела ниже температуры окружающей среды, то тело будет переходить из одного агрегатного состояния в другое, отбирая необходимую для фазового превращения тепловую энергию от окружающей среды, температура ее при этом по­нижается. Среда, от которой отводится теплота, называется охлаждаемой средой.

В практике для целей искусственного охлаждения используют испарение и кипение жидкостей, плавление водного льда и льдосоляных смесей, сублимацию твердой углекислоты, называемой сухим льдом.

Кипением называется парообразование во всем объеме жидкости. В отличие от испарения, которое происходит только с поверхности жидкости при любом давлении и любой температуре, кипение жидкости протекает при определенной температуре, зависящей от давления. Жидкости, имеющие при атмосферном давлении низкие температуры кипения и используемые в качестве рабочих тел в паровых холодильных машинах, называются холодильными агентами .

Плавление представляет собой переход из кристаллического состояния в жидкое. Температура плавления водного льда 0°С, теплота плавления 334,88 кДж/кг.

С помощью льда нельзя получить низкие температуры. Для получения отрицательных температур используют смесь льда и поваренной соли. С повышением концентрациисоли до 23,1% температура плавления льдосоляной смеси понижается до определенной (криогидратной) температуры (-21,2°С), при этом теплота плавления уменьшается до 197,6 кДж/кг. Дальнейшее увеличение концентрации соли приводит к повышению температуры плавления смеси.

Ледяное и льдосоляное охлаждение имеют существеннее недостатки: необходимость заготовки, транспортировки льда, невозможность получения достаточно низких температур, в связи с чем их применение ограниченно.

Сублимация. твердой углекислоты СО 2 протекает при температуре -78,9° С, при этом килограмм сухого льда, переходя в газообразное состояние, отбирает от окружающей среды скрытую теплоту, равную 117 кДж/кг. Применение сухого льда позволяет получить низкие температуры, однако его высокая стоимостьи связанные с доставкой транспортные расходы ограничивают его использование.

Адиабатное расширение газа . Оно протекает только за счет его внутренней энергии без подвода внешней. Уменьшение внутренней энергии сопровождается понижением температуры газа. Этот процесс использован в воздушных холодильных машинах.

Дросселирование. Так называют расширение газа жидкости при проходе ими суженного отверстия. В процессе дросселирования наряду с расширением происходит понижение давления рабочего тела, при этом внешней работы оно не совершает.

Дросселирование жидкостей сопровождается их частичным парообразованием и понижением температуры. При дросселировании наблюдается большое парообразование жидкости, чем при адиабатном расширении, так как работа сил трения при движении жидкости через узкое сечение превращается в теплоту и передается дросселируемой жидкости. Дросселирование используется для глубокого охлаждения и сжигания газов.

Термоэлектрическое охлаждение . Оно основано на использовании эффекта Пельтье. При пропускании электрического тока от источника питания 4 (рисунок 1.1) через термоэлемент, состоящий из двух полупроводников, соединенных последовательно: электрического 1 (-) и дырочного 2 (+), спаянных медными пластинами 3, один спай охлаждается до температуры Т х , другой нагревается до температуры Т т.

Похожие публикации