Компоненты современного теплоснабжения дома. Обзор современных способов отопления частного дома: выбор котлов, труб и радиаторов, а также альтернативных источников тепла. Перспективы развития теплоснабжения в России

Система теплоснабжения

Вопросы

1. Понятие системы теплоснабжения и ее классификация.

2. Централизованные системы отопления и их элементы.

3. Схемы тепловых сетей.

4. Прокладка тепловых сетей.

1. Комплексное инженерное оборудование сельских населенных пунктов./А.Б. Кеатов, П.Б. Майзельс, И.Ю. Рубчак. – М.: Стройиздат, 1982. – 264 с.

2. Кочева М.А. Инженерное оборудование и благоустройство застроенных территорий: Учебное пособие. – Н. Новгород: Нижегород. гос. архит.-строит. ун.-т., 2003.–121 с.

3. Инженерные сети и оборудование территорий, зданий и стройплощадок / И.А. Николаевская, Л.П. Горлопанова, Н.Ю. Морозова; Под. ред И.А. Николаевской. – М: Изд. центр «Академия», 2004. – 224 с.

Понятие системы теплоснабжения и ее классификация

Система теплоснабжения - совокупность технических устройств, агрегатов и подсистем, обеспечивающих: 1) приготовление теплоносителя, 2) его транспортировку, 3) распределение в соответствии со спросом на теплоту по отдельным потребителям.

Современные системы теплоснабжения должны удовлетворять следующим основным требованиям:

1. Надежная прочность и герметичность трубопроводов и установленной
на них арматуры при ожидаемых в эксплуатационных условиях давлениях температурах теплоносителя.

2. Высокое и устойчивое в эксплуатационных условиях тепло- и электросопротивление, сопротивление, а также низкие воздухопроницаемость и водопоглощение изоляционной конструкции.

3. Возможность изготовления в заводских условиях всех основных»
элементов теплопровода, укрупненных до пределов, определяемых типом и
костью подъемно-транспортных средств. Сборка теплопроводов на трассе!
готовых элементов.

4. Возможность механизации всех трудоемких процессов строительства и монтажа.

5. Ремонтопригодность, т. е. возможность быстрого обнаружения причин
возникновения отказов или повреждений и устранение неполадок и их последствий путем проведения ремонта в заданное время.

В зависимости от мощности систем и числа потребителей, получающих от них тепловую энергию, системы теплоснабжения подразделяются на централизованные и децентрализованные.

Тепловая энергия в виде горячей воды или пара транспортируется от источника теплоты (теплоэлектроцентрали (ТЭЦ) или крупной котельной) к потребителям по специальным трубопроводам - тепловым сетям.

Системы теплоснабжения состоят из трех основных элементов: генератора, в котором вырабатывается тепловая энергия; теплопроводов, по которым тепло подводится к нагревательным приборам; нагревательных приборов, служащих для передачи тепла от теплоносителя воздуху отапливаемого помещения или воздуху в системах вентиляции, или водопроводной воде в си­стемах горячего водоснабжения.

В малых населенных пунктах применяются в основном две системы теплоснабжения: местные и централизованные. Цент­ральные системы не характерны для застройки не выше трех этажей.

Местные системы - в которых все три основных элемента на­ходятся в одном помещении или в смежных. Радиус действия таких систем ограничивается несколькими помещениями незна­чительных размеров.

Централизованные системы характерны тем, что тепловой генератор удален из отапливаемых зданий или потребителей горячего водоснабжения в специальное здание. Таким источником тепла может быть котельная для группы зданий, поселковая котельная или теплоэлектроцентраль (ТЭЦ).

К местным системам отопления относятся: печное на твердом топливе, печное и калориферное газовое, поэтажные или квартирные водяные системы и электрическое.

Печное отопление на твердом топливе. Отопительные печи устраиваются в населенных пунктах с небольшой теплоплотностью. По санитарно-гигиеническим и противопожарным соображениям их разрешается устраивать только в одно- и двухэтажных зданиях.

Конструкции комнатных печей весьма разнообразны. Они могут быть различной формы в плане, с различной отделкой на­ружной поверхности и с различными схемами дымооборотов, расположенных внутри печи, по которым происходит движение газов. В зависимости от направления движения газов внутри печей различают многооборотные канальные и бесканальные печи. Во-первых, движение газов внутри печи происходит по ка­налам, соединенным последовательно или параллельно, во-вторых, движение газов происходит внутри полости печи свободно.

небольшого объема зданиях или в небольших вспомогательных зданиях на промышленных площадках, удаленных от основных производственных корпусов. Примером таких систем являются печи, газовое или электрическое отопление. В этих случаях получение тепла и передача его воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях.

Центральной системой теплоснабжения называют систему снабжения теплом одного здания любого объема, от одного источника тепла. Как правило, такими системами называют системы отопления зданий, получающих тепло от котла, установленного в подвале здания, или отдельно стоящих котельных. От этого котла может подаваться тепло для систем вентиляции и горячего водоснабжения этого здания.

Централизованными системы теплоснабжения назы­ваются в том случае, когда от одного источника тепла (ТЭЦ или районных котельных) подается тепло для многих зданий. По виду - источника тепла системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При районномтеплоснабжении источником тепла служит районная котель­ная, а при теплофикации - ТЭЦ (теплоэлектроцентраль).

Теплоноситель подготавливается в районной котельной (или ГЭЦ). Подготовленный теплоноситель по трубопроводам поступает в системы отопления и вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированного в нем тепла и отводится по специальным трубопроводам к источ­нику тепла. Теплофикация от районного теплоснабжения отлича­ется не только видом источника тепла, но и самим характером производства тепловой энергии.

Теплофикация может быть охарактеризована как централизованное теплоснабжение на базе комбинированного производства тепловой и электрической энергии. Кроме источника тепла, все другие элементы в системах районного теплоснабжения и теплофикации одинаковы.


По виду теплоносителя системы теплоснабжения делятся на две группы - водяные и паровые системы теплоснабжения.

Теплоносителем называется среда, которая передает тепло от источника тепла к теплопотребляющим приборам систем отопления, вентиляции и горячего водоснабжения. В системах теплоснабжения, применяемых в нашей стране для городов и жилых районов, в качестве теплоносителя используют воду. На промыш­ленных площадках, в промышленных районах для систем тепло­снабжения применяют воду и пар. Пар в основном применяется для силовых и технологических потребностей.

В последнее время начали применять и на промышленных предприятиях единый теплоноситель - воду, нагретую до разных температур, которую используют и при технологических процес­сах. Применение единого теплоносителя упрощает схему тепло­снабжения, ведет к уменьшению капитальных затрат и способст­вует качественной и дешевой эксплуатации.

К теплоносителям, применяемым в системах централизованно­го теплоснабжения, предъявляются санитарно-гигиенические, технико-экономические и эксплуатационные требования. Главнейшее санитарно-гигиеническое требование заключается в том, что любой теплоноситель не должен ухудшать в закрытых помещениях микроклиматических условий для находящихся в них людей, а в про­мышленных зданиях и для оборудования. Теплоноситель не должен обладать высокой температурой, так как это может вести к высокой температуре поверхностей нагревательных приборов и вызывать разложение пыли органического происхождения и не­приятно воздействовать на человеческий организм. Максимальная температура на поверхности нагревательных приборов не должна быть выше 95-105 °С в жилых и общественных зданиях; в про­мышленных зданиях допускается до 150 °С.

Технико-экономические требования к теплоносителю сводятся к тому, чтобы при применении того или иного теплоносителя стоимость тепловых сетей, по которым транспортируется теплоноситель, была наименьшей, а также малой была масса нагревательных приборов и обеспечен наименьший расход топлива для нагревания помещений.

Эксплуатационные требования заключаются в том, чтобы теплоноситель обладал качествами, позволяющими проводить центральную (из одного места, например котельной) регулировку тепловой отдачи систем теплопотребления. Необходимость изменять расходы тепла в системах отопления и вентиляции вызван, переменными температурами наружного воздуха. Эксплуатационным показателем теплоносителя считается также срок службы отопительно-вентиляционных систем при применении того или иного теплоносителя.

Если сравнить по перечисленным основным показателям воду и пар, можно отметить следующие их преимущества.

Преимущества воды: сравнительно низкая температура воды и поверхности нагревательных приборов; возможность транспортирования воды на большие расстояния без значительного уменьшения ее теплового потенциала; возможность центрального регулирования тепловой отдачи систем теплопотребления; простота присоединений водяных систем отопления, вентиляции и горячего водоснабжения к тепловым сетям; сохранение конденсата греющего пара на ТЭЦ или в районных котельных; большой срок службы I систем отопления и вентиляции.

Преимущества пара: возможность применения пара не только для тепловых потребителей, но также для силовых и технологических нужд; быстрый прогрев и быстрое охлаждение систем парового отопления, что представляет собой ценность для помещения с периодическим обогревом; пар низкого давления (обычно применяемый в системах отопления зданий) имеет малую объемную массу (примерно в 1650 раз меньше объемной массы воды); это обстоятельство в паровых системах отопления позволяет не учитывать гидростатическое давление и применять пар в качестве теплоносителя в многоэтажных зданиях; паровые системы теплоснабжения по тем же соображениям могут применяться при самом неблагоприятном рельефе местности теплоснабжаемого района; более низкая первоначальная стоимость паровых систем ввиду меньшей поверхности нагревательных приборов и меньших диаметров трубопроводов; простота начальной регулировки вследствие самораспределения пара; отсутствие расхода энергии на транспортирование пара.

К недостаткам пара, кроме перечисленных преимуществ воды, можно отнести дополнительно: повышенные потери тепла паропроводами из-за более высокой температуры пара; рок службы паровых систем отопления значительно меньше, чем водяных, из-за более интенсивной коррозии внутренней поверхности конденсатопроводов.

Несмотря на некоторые преимущества пара как теплоносителя, его применяют для систем отопления значительно реже воды и то лишь для тех помещений, в которых длительно не находятся люди. Строительными нормами и правилами паровое отопление допускается применять в торговых помещениях, банях, прачечных, кинотеатрах, в помещениях промышленных зданий. В жилых зданиях паровые системы не применяют.

В системах воздушного отопления и вентиляции зданий, где нет непосредственного соприкосновения пара с воздухом помещений, его применение в качестве первичного (нагревающего воздух) теплоносителя разрешается. Пар также можно использовать для нагревания водопроводной воды в системах горячего водоснабжения.

Министерство образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Магнитогорский государственный технический университет

им. Г.И. Носова»

(ФГБОУ ВПО «МГТУ»)

Кафедра Теплоэнергетических и энергетических систем

Реферат

по дисциплине «Введение в направление»

на тему: «Централизованное и децентрализованное теплоснабжение»

Выполнил: студент Султанов Руслан Салихович

Группа: зЭАТБ-13 «Теплоэнергетика и теплотехника»

Шифр: 140100

Проверил: Агапитов Евгений Борисович, д.т.н.

Магнитогорск 2015 г.

1.Введение 3

2.Централизованное теплоснабжение 4

3.Децентрализованное теплоснабжение 4

4.Виды систем отопления и принципы их действия 4

5.Современные системы отопления и горячего водоснабжения в России 10

6.Перспективы развития теплоснабжения в России 15

7.Заключение 21

  1. Введение

Проживая в умеренных широтах, где основная часть года холодная, необходимо обеспечить теплоснабжение зданий: жилых домов, офисов и других помещений. Теплоснабжение обеспечивает комфортное проживание, если это квартира или дом, продуктивную работу, если это офис или склад.

Сначала разберёмся, что же понимают под термином «Теплоснабжение». Теплоснабжение - это снабжение систем отопления здания горячей водой либо паром. Привычным источником теплоснабжения являются ТЭЦ и котельные. Существует два вида теплоснабжения зданий: централизованное и местное. При централизованном – снабжаются отдельные районы (промышленные или жилые). Для эффективной работы централизованной сети теплоснабжения, её строят, разделяя на уровни, работа каждого элемента заключается в выполнении одной задачи. С каждым уровнем задача элемента уменьшается. Местное теплоснабжение – снабжение теплом одного или несколько домов. Централизованные сети теплоснабжения имеют ряд преимуществ: снижение расходов топлива и сокращение затрат, использование низкосортного топлива, улучшение санитарного состояния жилых районов. Система централизованного теплоснабжения включает в себя источник тепловой энергии (ТЭЦ), тепловой сети и теплопотребляющих установок. ТЭЦ комбинированно вырабатывает тепло и энергию. Источниками местного теплоснабжения являются печи, котлы, водонагреватели.

Системы теплоснабжения отличаются различными температурами и давлением воды. Это зависит от требований потребителей и экономических соображений. При увеличении расстояния, на которое необходимо «передать» тепло, увеличиваются экономические затраты. В настоящее время расстояние передачи тепла измеряется десятками километров. Системы теплоснабжения делятся по объёму тепловых нагрузок. Системы отопления относят к сезонным, а системы горячего водоснабжения – к постоянным.

  1. Централизованное теплоснабжение

Централизованное теплоснабжение характеризуется наличием обширной разветвлённой абонентской теплосети с запитыванием многочисленных теплоприемников (заводы, предприятия, здания, квартиры, жилые помещения и прочие).

Основными источниками для централизованного теплоснабжения являются: - теплоэлектроцентрали (ТЭЦ), которые также попутно вырабатывают и электроэнергию; - котельные (водогрейные и паровые).

  1. Децентрализованное теплоснабжение

Децентрализованное теплоснабжение характеризуется системой теплоснабжения, при которой источник тепла совмещен теплоприёмником, то есть теплосеть незначительна или отсутствует вообще. Если в помещениях используются отдельные индивидуальные электрические или местные отопительнын теплоприемники, то такое тепловое снабжение будет индивидуальным (примером может служить обогрев собственной малой котельной всего здания). Мощность таких теплоисточников, как правило,совсем мала и зависит от потребности их владельцев. Теплопроизводительность таких индивидуальных теплоисточников не больше 1 Гкал/ч или 1,163 МВт.

Основные виды такого децентрализованного отопления:

Электрическое, а именно: - прямое; - аккумуляционное; - теплонасосное; - печное. Малыми котельными.

- 202.50 Кб

Министерство образования и науки

ГОУ ВПО «Братский государственный университет»

Факультет энергетики и автоматики

Кафедра промышленной теплоэнергетики

Реферат по дисциплине

«Теплогазоснабжение и вентиляция»

Современные системы теплоснабжения

Перспективы развития

Выполнила:

Ст группы ТГВ-08

Н.А. Снегирева

Руководитель:

Профессор, к.т.н., кафедры ПТЭ

С.А. Семенов

Братск 2010

Введение

1. Виды систем центрального отопления и принципы их действия

2. Сравнение современных систем теплоснабжения теплового гидродинамического насоса типа ТС1 и классического теплового насоса

3. Автономные системы теплоснабжения

4. Современные системы отопления и горячего водоснабжения в России

4.2 Газовое отопление

4.3 Воздушное отопление

4.4 Электрическое отопление

4.5 Трубопроводы

4.6 Котельное оборудование

5. Перспективы развития теплоснабжения в России

Заключение

Введение

Проживая в умеренных широтах, где основная часть года холодная, необходимо обеспечить теплоснабжение зданий: жилых домов, офисов и других помещений. Теплоснабжение обеспечивает комфортное проживание, если это квартира или дом, продуктивную работу, если это офис или склад.

Сначала разберёмся, что же понимают под термином «Теплоснабжение». Теплоснабжение - это снабжение систем отопления здания горячей водой либо паром. Привычным источником теплоснабжения являются ТЭЦ и котельные. Существует два вида теплоснабжения зданий: централизованное и местное. При централизованном – снабжаются отдельные районы (промышленные или жилые). Для эффективной работы централизованной сети теплоснабжения, её строят, разделяя на уровни, работа каждого элемента заключается в выполнении одной задачи. С каждым уровнем задача элемента уменьшается. Местное теплоснабжение – снабжение теплом одного или несколько домов. Централизованные сети теплоснабжения имеют ряд преимуществ: снижение расходов топлива и сокращение затрат, использование низкосортного топлива, улучшение санитарного состояния жилых районов. Система централизованного теплоснабжения включает в себя источник тепловой энергии (ТЭЦ), тепловой сети и теплопотребляющих установок. ТЭЦ комбинированно вырабатывает тепло и энергию. Источниками местного теплоснабжения являются печи, котлы, водонагреватели.

Системы теплоснабжения отличаются различными температурами и давлением воды. Это зависит от требований потребителей и экономических соображений. При увеличении расстояния, на которое необходимо «передать» тепло, увеличиваются экономические затраты. В настоящее время расстояние передачи тепла измеряется десятками километров. Системы теплоснабжения делятся по объёму тепловых нагрузок. Системы отопления относят к сезонным, а системы горячего водоснабжения – к постоянным.

1. Виды систем центрального отопления и принципы их действия

Централизованное теплоснабжение состоит из трех взаимосвязанных и последовательно протекающих стадий: подготовки, транспортировки и использования теплоносителя. В соответствии с этими стадиями каждая система состоит из трех основных звеньев: источника теплоты(например, теплоэлектроцентрали или котельной), тепловых сетей(теплопроводов) и потребителей теплоты.

В децентрализованных системах теплоснабжения каждый потребитель имеет собственный источник теплоты.

Теплоносителями в системах центрального отопления могут быть вода, пар и воздух; соответствующие системы называют системами водяного, парового или воздушного отопления. Каждая из них имеет свои достоинства и недостатки. теплоснабжение центральный отопление

Достоинствами системы парового отопления являются значительно меньшие ее стоимость и расход металла по сравнению с другими системами: при конденсации 1 кг пара освобождается примерно 535 ккал, что в 15-20 раз больше количества тепла, выделяющегося при остывании 1 кг воды в нагревательных приборах, и поэтому паропроводы имеют значительно меньший диаметр, чем трубопроводы системы водяного отопления. В системах парового отопления меньше и поверхность нагревательных приборов. В помещениях, где люди пребывают периодически (производственные и общественные здания), система парового отопления даст возможность производить отопление с перерывами и при этом не возникает опасность замерзания теплоносителя с последующим разрывом трубопроводов.

Недостатками системы парового отопления являются ее низкие гигиенические качества: находящаяся в воздухе пыль пригорает на нагревательных приборах, нагретых до 100°С и более; регулировать теплоотдачу этих приборов невозможно и большую часть отопительного периода система должна работать с перерывами; наличие последних приводит к значительным колебаниям температуры воздуха в отапливаемых помещениях. Поэтому системы парового отопления устраивают только в тех зданиях, где люди пребывают периодически - в банях, прачечных, душевых павильонах, вокзалах и в клубах.

На системы воздушного отопления расходуется мало металла, и они могут одновременно с обогревом помещения выполнять его вентиляцию. Однако стоимость системы воздушного отопления жилых зданий выше, чем других систем.

Системы водяного отопления имеют большие стоимость и металлоемкость по сравнению с паровым отоплением, но они обладают высокими санитарно-гигиеническими качествами, обеспечивающими им широкое распространение. Их устраивают во всех жилых зданиях высотой более двух этажей, в общественных и большинстве производственных зданий. Централизованное регулирование теплоотдачи приборов в этой системе достигается путем изменения температуры поступающей в них воды.

Системы водяного отопления различают по способу перемещения воды и конструктивным решениям.

По способу перемещения воды различают системы с естественным и механическим (насосным) побуждением. Системы водяного отопления с естественным побуждением. Принципиальная схема такой системы состоит из котла (генератора тепла), подающего трубопровода, нагревательных приборов, обратного трубопровода и расширительного сосуда, Нагретая в котле вода поступает в нагревательные приборы, отдает в них часть своего тепла на компенсацию потерь тепла через наружные ограждения отапливаемого здания, затем возвращается в котел и далее циркуляция воды повторяется. Ее движение происходит под действием естественного побуждения, возникающего в системе при нагреве воды в котле.

Циркуляционное давление, создавшееся при работе системы, расходуется на преодоление сопротивления движению воды по трубам (от трения воды о стенки труб) и на местные сопротивления (в отводах, кранах, вентилях, нагревательных приборах, котлах, тройниках, крестовинах и т. д.).

Величина этих сопротивлений тем больше, чем выше скорость движения воды в трубах (если скорость увеличится в два раза, то сопротивление - в четыре раза, т. е. в квадратичной зависимости). В системах с естественным побуждением в зданиях небольшой этажности величина действующего давления невелика, и поэтому в них нельзя допускать больших скоростей движения воды в трубах; следовательно, диаметры труб должны быть большими. Система может оказаться экономически невыгодной. Поэтому применение систем с естественной циркуляцией допускается лишь для небольших зданий. Радиус действия таких систем не должен превышать 30 м, а величина к должна быть не менее 3 м.

При нагревании воды в системе объем ее увеличивается. Для вмещения этого дополнительного объема воды в системах отопления предусматривается расширительный сосуд 3; в системах с верхней разводкой и естественным побуждением он одновременно служит для удаления из них воздуха, выделяющегося из воды при ее нагреве в котлах.

Системы водяного отопления с насосным побуждением. Система отопления всегда заполнена водой и задачей насосов является создание давления, необходимого только для преодоления сопротивления движению воды. В таких системах одновременно действуют естественное и насосное побуждения; суммарное давление для двухтрубных систем с верхней разводкой, кгс/м2 (Па)

По экономическим соображениям обычно принимают в размере 5-10 кгс/м2 на 1 м (49-98 Па/м).

Достоинствами систем с насосным побуждением является снижение затрат на трубопроводы (их диаметр меньше, чем в системах с естественным побуждением) и возможность от одной котельной снабжать теплом ряд зданий.

Приборы описанной системы, расположенные на разных этажах здания, работают в разных условиях. Давление р2, обеспечивающее циркуляцию воды через прибор второго этажа, примерно в два раза больше, чем давление р1 для прибора нижнего этажа. В то же время суммарное сопротивление кольца трубопровода, проходящего через котел и прибор второго этажа, примерно равно сопротивлению кольца, проходящего через котел и прибор первого этажа. Поэтому первое кольцо будет работать с избыточным давлением, в прибор на втором этаже поступит больше воды, чем нужно по расчету, и соответственно уменьшится количество воды, проходящее через прибор на первом этаже.

В результате в отапливаемом данным прибором помещении второго этажа наступит перегрев, а в помещении первого этажа - недогрев. Для устранения этого явления применяют специальные методы расчета систем отопления, а также пользуются устанавливаемыми на горячей подводке к приборам кранами двойной регулировки. Если прикрыть эти краны у приборов на втором этаже, можно полностью погасить избыточное давление и тем самым отрегулировать расход воды по всем приборам, находящимся на одном стояке. Однако неравномерность распределения воды в системе, возможна и по отдельным стоякам. Объясняется это тем, что длина колец и, следовательно, суммарные их сопротивления в такой системе для всех стояков неодинаковы: наименьшее сопротивление имеет кольцо, проходящее через стояк (ближайший к главному стояку); наибольшее сопротивление имеет самое длинное кольцо, проходящее через стояк.

Распределить воду по отдельным стоякам, можно путем соответствующей регулировки установленных на каждом стояке пробочных (проходных) кранов. Для циркуляции воды устанавливают два насоса - один рабочий, второй - запасной. Вблизи насосов делают обычно закрытую, обводную линию с задвижкой. В случае прекращения подачи электроэнергии и остановки насоса задвижка открывается, и система отопления работает с естественной циркуляцией.

В системе с насосным побуждением расширительный бак присоединяется к системе перед насосами, и поэтому накапливающийся воздух через него не может удаляться. Для удаления воздуха в смонтированных ранее системах концы подающих стояков были продолжены воздушными трубами, на которых установлены вентили (для отключения стояка на ремонт). Воздушная магистраль в месте присоединения к воздухосборнику выполнена в виде петли, препятствующей циркуляции воды через воздушную магистраль. В настоящее время вместо такого решения применяют воздушные краны, ввинченные в верхние пробки радиаторов, установленных на верхнем этаже здания.

Системы отопления с нижней разводкой в эксплуатации более удобны, чем системы с верхней разводкой. Через подающую магистраль не теряется столько тепла и можно своевременно обнаружить и устранить утечку воды из нее. Чем выше помещен нагревательный прибор в системах с нижней разводкой, тем, следовательно, больше давление, имеющееся в кольце. Чем больше длина кольца, тем больше его суммарное сопротивление; поэтому в системе с нижней разводкой избыточные давления у приборов верхних этажей значительно меньше, чем в системах с верхней разводкой и, следовательно, регулировка их проще. В системах с нижней разводкой величина естественного побуждения снижается из-за ого, что вследствие охлаждения в подающих стояках оды возникает тормозящее ее движение сверху вниз, поэтому суммарное давление, действующее в таких системах,

В настоящее время большое распространение получили однотрубные системы, в которых радиаторы обеими подводками присоединяются к одному стояку; такие системы проще монтируются и обеспечивают более равномерный прогрев всех нагревательных приборов. Наиболее распространена однотрубная система с нижней разводкой и вертикальными стояками.

Стояк такой системы состоит из подъемной и опускной частей. Трехходовые краны могут пропускать расчетное количество или часть воды в приборы в последнем случае остальное ее количество проходит, минуя прибор, через замыкающие участки. Соединение подъемной и опускной частей стояка производится прокладываемой под окнами верхнего этажа соединительной трубой. В верхних пробках приборов, находящихся на верхнем этаже, устанавливают воздушные краны, через которые слесарь удаляет из системы воздух во время пуска системы или обильной подпитки ее водой. В однотрубных системах вода последовательно проходит через все приборы, и поэтому они должны быть тщательно отрегулированы. В случае необходимости регулировку теплоотдачи отдельных приборов осуществляют с помощью трехходовых кранов, а расход воды по отдельным стоякам - проходными (пробочными) кранами или установкой в них дросселирующих шайб. Если стояк будет поступать чрезмерно большое количество воды, то первые по ходу движения воды нагревательные приборы стояка отдадут тепла больше, чем это необходимо по расчету.

Краткое описание

Проживая в умеренных широтах, где основная часть года холодная, необходимо обеспечить теплоснабжение зданий: жилых домов, офисов и других помещений. Теплоснабжение обеспечивает комфортное проживание, если это квартира или дом, продуктивную работу, если это офис или склад.
Сначала разберёмся, что же понимают под термином «Теплоснабжение». Теплоснабжение - это снабжение систем отопления здания горячей водой либо паром. Привычным источником теплоснабжения являются ТЭЦ и котельные. Существует два вида теплоснабжения зданий: централизованное и местное.

Содержание

Введение
1. Виды систем центрального отопления и принципы их действия
2. Сравнение современных систем теплоснабжения теплового гидродинамического насоса типа ТС1 и классического теплового насоса
3. Автономные системы теплоснабжения
4. Современные системы отопления и горячего водоснабжения в России
4.1 Системы водяного отопления
4.2 Газовое отопление
4.3 Воздушное отопление
4.4 Электрическое отопление
4.5 Трубопроводы
4.6 Котельное оборудование
5. Перспективы развития теплоснабжения в России
Заключение
Список использованной литературы

Все современные системы отопления частных домов и других жилых зданий можно условно разделить на 2 группы. К первой относятся традиционные способы обогрева, где используется единый источник тепла - котел, работающий на одном или нескольких энергоносителях. При этом тепловая энергия раздается по помещениям посредством теплоносителя – воды или воздуха. Здесь инновационные решения направлены на усовершенствование отопительного оборудования путем повышения его теплоотдачи, а также на внедрение современных средств автоматизации.

Ко второй группе следует отнести все системы, использующие новые технологии отопления с энергосберегающим оборудованием. В них не предусматривается сжигания углеводородов, из энергоносителей в обогреве дома участвует только электроэнергия. Это различные гелиосистемы, солнечные коллекторы и новейшие разновидности электрического отопления. Несмотря на всю привлекательность этих систем, большинство домовладельцев предпочитает устройство обогрева частных домов традиционными способами, а почему – рассказано в нашей статье.

Эволюция традиционных систем и котлов

В советские времена, когда никто не озабочивался стоимостью энергоносителей, отопительное оборудование и системы были достаточно примитивны, хотя делались весьма надежно и прослужили немало лет. Сейчас приоритеты изменились, стали актуальными современные энергосберегающие технологии, позволяющие экономить постоянно дорожающие энергоносители.

Благодаря этому традиционные системы стали совершеннее за счет внедрения таких решений:

  • повышение КПД всех котельных установок, исключая электрические, поскольку их эффективность и без того очень высока (98-99%);
  • использование новых материалов и технологий для изготовления радиаторов отопления;
  • внедрения современных средств автоматики, управляющей работой систем в зависимости от погодных условий и времени суток, в том числе и дистанционно;
  • применение низкотемпературных отопительных сетей – водяных теплых полов с автоматическим регулированием нагрева;
  • реализация отбора тепла от выбрасываемого вытяжного воздуха при воздушном отоплении зданий (рекуперация).

Ярким примером энергосберегающего газового оборудования являются конденсационные котлы, где установлены самые современные теплообменники. Дело в том, что при сгорании метана образуется вода, которая тут же испаряется в пламени горелки и таким образом отнимает часть выделяемого тепла. Теплообменник конденсационного котла устроен так, чтобы заставлять пары конденсироваться и отдавать эту энергию обратно. За счет такого инновационного решения КПД теплогенератора достигает 96%.

Претерпели изменения и горелочные устройства, теперь они умеют самостоятельно дозировать количество топлива и воздуха, а также автоматически менять интенсивность горения. Это касается и твердотопливных котлов, сжигающих древесные гранулы – пеллеты. Благодаря чистоте данного вида твердого топлива, полной автоматизации процесса и развитой поверхности теплообмена современный пеллетный котел может работать с эффективностью до 85%.

Повышение КПД обычных дровяных котлов для обогрева частных домов может быть достигнуто только за счет отбора тепла у дымовых газов, средний показатель этих агрегатов составляет 70-75%.

Современные отопительные приборы изготавливаются из лучших теплопроводящих материалов – алюминиевого сплава и стали, хотя и у чугунных батарей в стиле ретро еще остается множество поклонников. Настоящая новинка в сфере отопления – водяные плинтусные конвекторы, выполненные из медных пластин и очень эффективно передающие тепло в помещения частного дома.

О теплых полах и воздушном отоплении

Широко применяющиеся напольные системы отопления нельзя назвать такими уж новыми. Но они проявили себя на практике как весьма экономичные и вот почему:

  • теплоноситель в контурах теплого пола греется не более, чем до 45 °С;
  • нагрев комнаты происходит всей поверхностью пола;
  • система хорошо поддается управлению современными средствами автоматизации;
  • нагретая стяжка долго сохраняет тепло после отключения нагрева.

Примечание. Помимо того, что теплый пол эффективно использует тепло, он обеспечивает его подачу в нижнюю зону помещения, что очень комфортно для находящихся там людей.

Современные решения в части воздушного обогрева зданий заключаются в том, чтобы не терять тепло, затраченное на нагрев вентиляционного воздуха. Отбор тепла у вытяжного воздуха осуществляется специальными теплообменниками – рекуператорами. Это действительно инновации в отоплении, поскольку они в состоянии вернуть до 80% затраченной энергии и передать ее приточному воздуху, существенно экономя энергоносители.

Новейшие отопительные системы

Пример довольно доступной и в то же время эффективной системы, подходящей как для загородного дома, так и для квартиры, – электрический теплый пол. Понеся сравнительно небольшие расходы на устройство такого обогрева, можно обеспечить жилище теплом и не покупать никаких котлов. Недостаток один - стоимость электроэнергии. Но учитывая, что современный напольный обогрев довольно экономичен, да при наличии многотарифного счетчика данный вариант может оказаться приемлемым.

Для справки. При устройстве электрического теплого пола используется 2 вида нагревателей: тонкая полимерная пленка с нанесенными углеродными элементами либо греющий кабель.

В южных регионах с высокой солнечной активностью неплохо себя показывает еще одна современная отопительная система. Это водяные солнечные коллекторы, устанавливаемые на кровле зданий или других открытых местах. В них с минимальными потерями вода нагревается напрямую от солнца, после чего подается в дом. Одна беда – коллекторы абсолютно бесполезны ночью, а также в северных регионах.

Различные гелиосистемы, берущие тепло от земли, воды и воздуха и передающие его в частный дом – это установки, в которых реализованы самые современные технологии отопления. Расходуя всего 3-5 кВт электроэнергии, эти агрегаты способны «перекачать» извне в 5-10 раз больше тепла, отсюда и название – тепловые насосы. Дальше с помощью этой тепловой энергии можно нагревать теплоноситель или воздух, - на ваше усмотрение.

Примером воздушного теплового насоса может служить обычный кондиционер, принцип работы у них одинаков. Только гелиосистема одинаково хорошо обогревает загородный дом зимой и охлаждает летом.

Выводы

Общеизвестный факт: чем инновация в системе отопления эффективнее, тем она дороже, хотя и требует меньших расходов при эксплуатации. И наоборот, дешевые в монтаже высокотехнологичные системы электрообогрева заставляют нас платить впоследствии за израсходованное электричество. Тепловые насосы же настолько дороги, что большинству граждан постсоветского пространства они недоступны.

Вторая причина, почему домовладельцы тяготеют к традиционным системам, - это прямая зависимость современного отопительного оборудования от наличия электроэнергии. Для жителей отдаленных районов этот факт играет большую роль, оттого они предпочитают строить печи из кирпича и топить дом дровами.

СОВРЕМЕННЫЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

(, Хабаровский центр энергоресурсосбережения)

В Хабаровске и Хабаровском крае, как и во многих других регионах Росси, преимущественно используются «открытые» системы теплоснабжения .

Под «открытой» системой в термодинамике понимается система, обменивающаяся массой с окружающей средой, т. е. «неплотная» система.

В данной публикации под «открытой» системой понимается система теплоснабжения, в которой система горячего водоснабжения (ГВС) подключена по «открытой» системе, т. е. с непосредственным водоразбором из трубопроводов системы теплоснабжения, а система отопления и вентиляции подключены по зависимой схеме присоединения к тепловым сетям.

Открытые системы теплоснабжения имеют следующие недостатки:

1. Большие расходы подпиточной воды и, следовательно, большие затраты на водоподготовку. При данной схеме теплоноситель может использоваться как продуктивно (на нужды ГВС), так и непродуктивно: несанкционированные утечки.

К несанкционированным утечкам относятся:

Утечки через запорно-регулирующую арматуру;

Утечки при повреждении трубопроводов;

Утечки через стояки системы отопления (сбросы) при разрегулированных системах отопления и при недостаточных перепадах давления на элеваторных вводах;

Утечки (сбросы) при ремонтах системы отопления, когда приходится полностью сливать воду и затем снова наполнять систему, а если выходные задвижки «не держат», то приходится «обесточивать» целый квартал или врезку.

Пример – авария в ноябре 2001 г. в Хабаровске на микрорайоне Большая – Вяземская. Чтобы провести в одной из школ ремонт системы теплоснабжения, пришлось отключить целый квартал.


2. При открытой схеме ГВС потребитель получает воду непосредственно из тепловой сети. В этом случае горячая вода может иметь температуру 90оС и более и давление 6-8 кгс/см2, что приводит не только к перерасходу тепла, но и потенциально создает опасную ситуацию как для санитарного оборудования, так и для людей.

3. Неустойчивый гидравлический режим теплопотребления (один потребитель вместо другого).

4. Плохое качество теплоносителя, который содержит большое количество механических примесей, органических соединений и растворенных газов. Это приводит к уменьшению срока эксплуатации трубопроводов систем теплоснабжения из-за повышенной коррозии и к уменьшению их пропускной способности из-за «обрастания», что нарушает гидравлический режим.

5. Невозможность, в принципе, создания комфортных условий у потребителя при использовании элеваторных систем отопления.

Необходимо ответить, что практически все тепловые пункты абонентов г. Хабаровска оборудованы элеваторным тепловым вводом.

Главное достоинство элеватора – это то, что он не потребляет энергии на свой привод. Сложилось мнение, что элеватор имеет низкий КПД, и это было бы справедливо, если для его работы необходимо было бы расходовать энергию. На самом деле для работы смешения используется разность давлений в трубопроводах системы теплоснабжения. Если бы не элеватор, то пришлось бы дросселировать поток теплоносителя, а дросселирование – это потеря энергии. Поэтому применительно к тепловым вводам, элеватор – это не насос с низким КПД, а устройство для вторичного использования энергии, затраченной на привод циркуляционных насосов ТЭЦ. Также к достоинствам элеватора можно отнести то, что для его обслуживания не требуются высококвалифицированные специалисты, так как элеватор – это простое, надежное и непритязательное в эксплуатации устройство.

Основной недостаток элеватора – это невозможность пропорционального регулирования тепловой мощности, так как при не изменяющемся диаметре отверстия соплового аппарата он имеет постоянный коэффициент смешения, а процесс регулирования предполагает возможности изменения этой величины. По этой причине на Западе элеватор отвергнут как устройство для тепловых пунктов. Отметим, что данный недостаток можно ликвидировать, если использовать элеватор с регулируемым соплом.

Однако практика использования элеваторов с регулируемым соплом показала их низкую надежность при плохом качестве сетевой воды (наличие механических примесей). Кроме того, такие устройства имеют небольшой диапазон регулирования. Поэтому в г. Хабаровске эти устройства не нашли широкого применения.

Другой недостаток элеватора – это ненадежность его работы при малом располагаемом перепаде давления. Для устойчивой работы элеватора необходимо иметь перепад давления от 120 кПа и более. Однако до настоящего времени в г. Хабаровске проектируются элеваторные узлы при перепаде давления 30-50 кПа. При таком перепаде нормальная эксплуатация элеваторных узлов, в принципе, невозможна и поэтому очень часто потребители с такими узлами работают на «сброс», что приводит к сверхнормативным потерям сетевой воды.

Применение элеваторных узлов тормозит внедрение в системах теплоснабжения энергосберегающих мероприятий, таких как комплексное автоматическое регулирование параметров теплоносителя в здании и адекватную этим задачам конструкцию системы отопления, обеспечивающих точность и стабильность комфортных условий и экономичный расход тепла.


Комплексное автоматическое регулирование включает в себя следующие базовые принципы:

регулирование в индивидуальных тепловых пунктах (ИТП) или автоматизированных узлах управления (АУУ), обеспечивающих в соответствии с отопительным графиком изменение температуры теплоносителя, подаваемого в систему отопления в зависимости от температуры наружного воздуха;

индивидуальное автоматическое регулирование на каждом отопительном приборе при помощи термостата, обеспечивающего поддержание заданной температуры в помещении.

Все вышеизложенное привело к тому, что, начиная с 2000 г., в г. Хабаровске начался масштабный переход от «открытых» зависимых систем теплоснабжения к «закрытым» независимым системам с автоматизированными тепловыми пунктами.

Реконструкция системы теплоснабжения с применением энергосберегающих мероприятий и переходом от «открытых» зависимых систем к «закрытым» независимым системам позволит:

Повысить комфортность и надежность обеспечения теплом за счет поддержания необходимой температуры в помещениях вне зависимости от погодных условий и параметров теплоносителя;

Повысит гидравлическую устойчивость системы теплоснабжения: гидравлический режим магистральных тепловых сетей нормализуется вследствие того, что автоматика не допускает сверхнормативного превышения потребления тепла;

Получить экономию тепла в размере 10-15% за счет регулирования температуры теплоносителя в соответствии с температурой наружного воздуха и ночного снижения температуры в отапливаемых зданиях до 30% в переходный период отопительного сезона;

Увеличить срок эксплуатации трубопроводов системы отопления здания в 4-5 раз, вследствие того, что при независимой схеме теплоснабжения во внутреннем контуре системы отопления циркулирует чистый теплоноситель, не содержащий растворенного кислорода и поэтому отопительные приборы и подводящие трубопроводы не забиваются грязью и продуктами коррозии;

Резко уменьшить подпитку тепловых сетей и, следовательно, затраты на водоподготовку, а также повысить качество горячей воды.

Применение независимых систем теплоснабжения открывает новые перспективы в развитии внутриквартальных сетей и внутренних систем отопления: использование гибких предизолированных пластиковых распределительных трубопроводов, имеющих срок службы около 50 лет, полипропиленовых труб для внутренних систем, штампованных панельных и алюминиевых радиаторов и т. п.

Однако переход в Хабаровске к современным системам теплоснабжения с автоматизированными тепловыми пунктами поставил перед проектными и монтажными организациями, энергоснабжающей организацией, потребителями тепла ряд проблем таких как:

Отсутствие круглогодичной циркуляции теплоносителя в магистральных тепловых сетях.

Устаревший подход к проектированию и монтажу внутренних систем теплоснабжения.

Необходимость в техническом обслуживании современных систем теплоснабжения.

Рассмотрим эти проблемы более подробно.

Проблема №1 Отсутствие круглогодичной циркуляции в магистральных трубопроводах тепловых сетей.

В Хабаровске магистральные трубопроводы системы теплоснабжения находятся под циркуляцией только в течение отопительного сезона: примерно с середины сентября до середины мая. В остальное время теплоноситель поступает по одному из трубопроводов: подающему или обратному, причем часть времени он подается по одному, а часть по другому трубопроводу.

Это приводит к большим неудобствам и дополнительным затратам при внедрении энергосберегающих технологий в системах теплоснабжения, в частности, в системах горячего водоснабжения (ГВС). Из-за отсутствия циркуляции в межотопительном сезоне приходится использовать смешанную «открыто-закрытую» систему ГВС: «закрытую» в отопительном сезоне и «открытую» в межотопительном сезоне, что увеличивает капитальные затраты на монтаж и оборудование теплового пункта на 0,5-3%.

Проблема №2. Устаревший подход к проектированию и монтажу внутренних систем теплоснабжения зданий.

В доперестроечный период развития нашего государства правительством была поставлена задача по экономии металла. В связи с этим началось массовое внедрение однотрубных нерегулируемых систем отопления, что было обусловлено более низкими (по сравнению с двухтрубными) металлозатратами, затратами на монтаж и более высокой теплогидравлической устойчивостью в многоэтажных зданиях.

В настоящее время при вводе новых объектов в городах России, таких как Москва и Санкт-Петербург, а также на Украине в целях энергосбережения обязательно применение терморегуляторов перед нагревательными приборами, что фактически, за незначительным исключением, предопределяет проектирование двухтрубных систем отопления.

Поэтому широкое распространение однотрубных систем при оснащении каждого отопительного прибора термостатом потеряло смысл. В регулируемых системах отопления при установке термостата перед нагревательным прибором двухтрубная система отопления оказывается высокоэффективной и обладающей повышенной гидравлической устойчивостью. При этом расхождения по металлозатратам по сравнению с однотрубными находятся в пределах ±10%.

Следует также отметить, что за рубежом однотрубные системы отопления практически не применяются

Схемы двухтрубных систем могут быть различными, однако наиболее целесообразно применять независимую схему, так как при применении терморегуляторов (термостатов) зависимая схема ненадежна в эксплуатации из-за низкого качества теплоносителя. При незначительных отверстиях в термостатах, измеряемых миллиметрами, они быстро выходят из строя.

В предлагается применять однотрубные системы отопления с терморегуляторами только для зданий не более 3-4 этажей. Там же отмечается нецелесообразность применения в системах отопления с терморегуляторами чугунных нагревательных приборов, так как в процессе эксплуатации из них вымываются формовочная земля, песок, окалина, которые забивают отверстия терморегуляторов.

Применение независимых схем теплоснабжения открывает новые перспективы: использование полимерных или металлополимерных трубопроводов для внутренних систем, современных нагревательных приборов (алюминиевые и стальные нагревательные приборы со встроенными терморегуляторами).

Следует отметить, что двухтрубная система отопления, в отличие от однотрубной, требует обязательной наладки с использованием специального оборудования и высококвалифицированных специалистов.

Необходимо отметить, что даже при проектировании и монтаже автоматизированных тепловых пунктов с погодным регулированием в г. Хабаровске до настоящего времени проектируются и внедряются только однотрубные системы отопления без терморегуляторов перед отопительными приборами. Причем эти системы гидравлически разбалансированы, а иногда настолько (например, детский дом по ул. Ленина), что для того, чтобы поддерживать нормальную температуру в здании, концевые стояки работают «на сброс» и это при независимой схеме отопления!

Хочется верить, что недооценка важности балансировки гидравлики систем отопления связана просто с отсутствием необходимых знаний и опыта.

Если Хабаровским проектировщикам и монтажным организациям задать вопрос: «Нужно ли проводить балансировку колес автомобиля?», то последует очевидный ответ: «Несомненно!» Но почему же тогда балансировка системы отопления, вентиляции и ГВС не считается необходимым делом. Ведь неправильные расходы теплоносителя приводят к неправильным температурам воздуха в помещении, плохой работе автоматики, шумам быстрому выходу из строя насосов, неэкономичной работе всей системы.

Проектировщики полагают, что достаточно провести гидравлический расчет с подбором труб и при необходимости шайб, и проблема будет решена. Но это не так. Во-первых, расчет имеет приближенный характер, а, во-вторых, при монтаже возникает масса дополнительных неконтролируемых факторов (чаще всего монтажники просто не устанавливают дроссельные шайбы).

Существует мнение , что гидравлику систем отопления можно увязать с помощью расчета настроек термостатических клапанов. Это тоже неверно. Например, если по каким-либо причинам через стояк не проходит достаточное количество теплоносителя, то термостатические клапаны будут просто открыты, а температура воздуха в помещении при этом будет низкой. С другой стороны, при перерасходе теплоносителя может возникнуть ситуация, когда открыты форточки и термостатические клапаны. Все вышесказанное абсолютно не умаляет необходимости и важности установки перед отопительными приборами термостатических клапанов, а лишь подчеркивает, что для их хорошей работы необходима балансировка системы.

Под балансировкой системы понимается наладка гидравлики, чтобы каждый элемент системы: радиатор, калорифер, ветвь, плечо, стояк, магистраль – имели проектные расходы. При этом определение и выставление настроек термостатических клапанов является частью процесса наладки.

Как было указано выше, в г. Хабаровске проектируются и монтируются только гидравлически разбалансированные однотрубные системы отопления без термостатов.

Покажем на примерах новых, вводимых в эксплуатацию объектах к чему это приводит.

Пример 1. Детский дом №1 по ул. Ленина.

Введен в эксплуатацию в конце 2001г. Система ГВС закрытая, а система отопления однотрубная, без термостатов, подключенная по независимой схеме. Проектировал – Хабаровскгражданпроект, монтаж системы отопления и ГВС – Хабаровское монтажное управление №1. Проектирование и монтаж теплового пункта – специалисты ХЦЭС. Тепловой пункт находится на техническом обслуживании в ХЦЭС.

После запуска системы теплоснабжения выявились следующие недостатки:

Система отопления не сбалансирована. В одних помещениях наблюдался перегрев: 25-27оС, а в других недогрев: 12-14оС. Это связано с несколькими причинами:

для балансировки системы отопления проектировщики предусмотрели шайбы, а монтажники их не врезали, мотивируя это тем, что «все равно они засорятся через 2-3 недели»;

отдельные отопительные приборы выполнены без замыкающих участков, их поверхность завышена, что приводит к перегреву отдельных помещений.

Кроме того, для того чтобы обеспечить циркуляцию и нормальную температуру, в недогретых помещениях, концевые стояки работали на «сброс», что приводило к утечкам воды 20-30 т в сутки и это при независимой схеме!!!

Система приточной вентиляции не работает, а это недопустимо, так как в здании установлены термостатические окна с низкой воздухопроницаемостью.

По просьбе Заказчика специалисты ХЦЭС установили на стояках балансировочную арматуру и провели балансировку системы отопления. В результате этого температура в помещениях выровнялась и составила 20-22оС, подпитка системы сократилась до нуля, а экономия тепловой энергии составила около 30%. Наладка системы вентиляции не проводилась.

Пример 2. Институт повышения квалификации врачей.

Введен в эксплуатацию в октябре 2002 . Система ГВС закрытая, система отопления однотрубная без термостатов подключена по независимой схеме.

После запуска системы отопления были выявлены следующие недостатки: система отопления не сбалансирована, арматура для регулировки системы отсутствует (проектом даже не предусмотрены дроссельные шайбы). Температура воздуха в помещениях изменяется от 18 до 25оС, причем для того, чтобы довести температуру в угловых помещениях до 18оС пришлось увеличить расход тепла в 3 раза по сравнению с требуемым. То есть если теплопотребление здания уменьшить в три раза, то в большинстве помещений будет температура 18-20оС, но при этом в угловых помещениях температура не превысит 12оС.

Эти примеры распространяются на все вновь введенные здания с независимыми схемами отопления в г. Хабаровске: цирк и гостиница цирка (в гостинице открыты форточки (перетоп), а в закулисной части холодно (недотоп), жилые дома по ул. Фабричной, ул. Дзержинского, терапевтический корпус Железнодорожной больницы и т. д.

С проблемой №2 тесно сплетается проблема №3.

Проблема №3. Необходимость в техническом обслуживании современных систем теплоснабжения.

Как показывает наш трехлетний опыт, современные системы теплоснабжения зданий, выполненные с использованием энергосберегающих технологий, в процессе эксплуатации нуждаются в постоянном уходе. Для этого необходимо привлекать высококвалифицированных, специально обученных специалистов, используя специальные технологии и инструменты.

Покажем это на примерах автоматизированных тепловых пунктов внедренных в г. Хабаровске.

Пример 1. Тепловые пункты, не обслуживаемые специализированными организациями.

В 1998 г. в г. Хабаровске было введено в эксплуатацию здание Хакобанка по улице Ленинградской г. Хабаровска. Система теплоснабжения здания была спроектирована и смонтирована специалистами из Финляндии. Оборудование использовано также финское. Система отопления выполнена по независимой двухтрубной схеме с термостатами, снабжена балансировочной арматурой. Система ГВС закрытая. Обслуживалась система специалистами банка. В первые три года эксплуатации во всех помещениях поддерживалась комфортная температура. Через 3 года пошли жалобы от жильцов отдельных квартир на то, что в квартире «холодно». Жильцы обратились в ХЦЭС с просьбой обследовать систему и помочь наладить «комфортный» режим.

Обследование ХЦЭС показало: система автоматического регулирования не работает (вышел из строя погодный регулятор ECL), теплообменные поверхности теплообменника системы отопления засорились, что привело к уменьшению его теплопроизводительности примерно на 30% и разбалансировке системы отопления.

Аналогичная картина наблюдалась на жилом доме по ул. Дзержинского 4, где современная система теплоснабжения обслуживалась силами жильцов.

Пример 2. Тепловые пункты, обслуживаемые специализированными организациями.

На сегодняшний день на обслуживании в Хабаровском центре энергоресурсосбережения находится около 60 автоматизированных тепловых пунктов. Как показал наш опыт эксплуатации, в процессе обслуживания таких узлов возникают следующие проблемы:

очистка фильтров, установленных перед теплообменниками ГВС и отопления и перед циркуляционными насосами;

контроль за работой насосов и теплообменного оборудования;

контроль за работой автоматики и регулирования.

Качество теплоносителя и, даже холодной воды, в г. Хабаровске очень низкое и поэтому постоянно возникает проблема очистки фильтров, которые установлены в первичном контуре теплообменников ГВС и отопления, перед циркуляционными насосами во вторичном контуре теплообменников. Например, при запуске в эксплуатацию в отопительном сезоне 2002/03г. блока жилых домов по переулку Фабричному, в каждом из которых был смонтирован ИТП, фильтр установленный в первичном контуре теплообменника отопления пришлось промывать 1-2 раза в день в течение первых 10-ти дней после запуска и затем, в последующие две недели, не менее одного раза в 2-3 дня. На здании цирка и гостиницы цирка в отопительном сезоне 2001/02г. пришлось промывать фильтр холодной воды 1-2 раза в неделю.

Казалось бы, что очистка фильтра, установленного в первичном контуре, это рутинная операция, которую может выполнить неквалифицированный специалист. Однако, для очистки (проливки) фильтра необходимо на какое-то время остановить всю систему теплоснабжения, отключить холодную воду, отключить циркуляционный насос в системе ГВС и затем все это снова запустить. Также при отключении системы теплоснабжения для очистки фильтров желательно отключить, а потом перезапустить систему автоматики, чтобы при запуске системы теплоснабжения не возникало гидроударов. При этом если при отключении первичного контура системы ГВС не отключить вторичный контур по холодной воде, то из-за температурных расширений в теплообменнике ГВС может появиться «течь».

Вторая проблема, которая возникает в процессе эксплуатации автоматизированных тепловых пунктов – это проблема контроля за работой оборудования: насосов, теплообменников, приборов учета и регулирования.

Например, часто перед запуском после межотопительного периода циркуляционные насосы находятся в «сухом» состоянии, т. е. не заполнены сетевой водой, и их сальниковые уплотнения засыхают, а иногда даже прикипают к валу насоса. Поэтому перед запуском, чтобы избежать протечек сетевой воды через сальниковые уплотнения, необходимо насос несколько раз плавно прокрутить вручную.

Также в процессе эксплуатации необходимо периодически следить за работой регулирующих клапанов, чтобы они не работали постоянно в режиме «закрыто» или «открыто», регуляторов давления, перепада давления и т. д., кроме того необходимо следить за изменением гидравлического сопротивления и теплопередающей поверхности теплообменников.

Контролировать изменения гидравлического сопротивления и площади теплопередающей поверхности теплообменников можно регистрируя или периодически измеряя температуру теплоносителя в первичном и во вторичном контуре теплообменника и перепад давлений и расход теплоносителя в этих контурах.

Например, в отопительном сезоне 2001/02г. в гостинице цирка через месяц после начала эксплуатации резко упала температура горячей воды. Исследования показали, что в начале эксплуатации расход теплоносителя в первичном контуре системы ГВС составлял составлял 2-3 т/час, а через месяц после начала эксплуатации он составлял не более 1 т/час. Это произошло из-за того что первичный контур теплообменника ГВС оказался забит продуктами сварки (окалиной), что привело к увеличению гидравлического сопротивления и уменьшению площади теплопередающей поверхности. После того, как теплообменник был разобран и промыт, температура горячей воды достигла нормы.

Как показал опыт обслуживания современных систем теплоснабжения с автоматизированными тепловыми пунктами, в процессе их эксплуатации необходимо осуществлять постоянный контроль и вносить коррективы в работу систем автоматики и регулирования. В Хабаровске в последние 3-5 лет температурный график 130/70 не соблюдается: даже при температуре ниже минус 30оС температура теплоносителя на входе у абонентов не превышает 105оС. Поэтому специалисты ХЦЭС, обслуживающие автоматизированные тепловые пункты, на основе статистических наблюдений за режимом теплопотребления объектов перед началом отопительного сезона для каждого объекта вносят в контроллер свой температурный график, который затем корректируют в течение отопительного сезона.

Проблема обслуживания автоматизированных тепловых пунктов тесно связана с отсутствием достаточного количества высококвалифицированных специалистов, которых целенаправленно не готовят в пределах Дальневосточного региона. В Хабаровском центре энергоресурсосбережения обслуживанием автоматизированных тепловых узлов занимаются специалисты – выпускники кафедры «Теплотехника, теплогазоснабжение и вентиляция» Хабаровского государственного технического университета, прошедшие обучение на фирмах-изготовителях оборудования (Данфос, Альфа-Лаваль и т. д.).

Отметим, что ХЦЭС является региональным сервисным центром фирм-поставщиков оборудования для автоматизированных тепловых пунктов, таких как: Данфос (Дания) – поставщик контроллеров, термодатчиков, регулирующих клапанов и т. д.; Вило (Германия) - поставщик циркуляционных насосов и насосовой автоматики; Альфа-Лаваль (Швеция-Россия) – поставщик теплообменного оборудования; ТБН «Энергосервис» (Москва) – поставщик теплосчетчиков и пр.

В соответствии с соглашением о сервисном партнерстве, заключенном между ХЦЭС и фирмой Альфа-Лаваль, ХЦЭС проводит работы по обслуживанию теплообменного оборудования фирмы Альфа-Лаваль, используя для этого персонал, прошедший обучение в сервисном центре Альфа-Лаваль, и используя для этих целей только разрешенные к эксплуатации Альфа-Лаваль оригинальные запасные части и материалы.

В свою очередь Альфа-Лаваль поставило ХЦЭС оборудование, инструмент, расходные материалы и запасные части, необходимые для обслуживания пластинчатых теплообменников компании Альфа-Лаваль, провело обучение специалистов ХЦЭС в своем сервисном центре.

Это позволяет ХЦЭС осуществлять разборную и безразборную промывку теплообменников непосредственно у потребителей в г. Хабаровске.

Поэтому все вопросы, связанные с эксплуатацией и ремонтом оборудования автоматизированных тепловых пунктов, решаются на месте - в г. Хабаровске.

Отметим также, что в отличие от других фирм, занимающихся внедрением автоматизированных тепловых пунктов, ХЦЭС устанавливает более дорогое, но более надежное и более качественное оборудование (например, разборные, а не паянные теплообменники, насосы с сухим, а не мокрым ротором). Это гарантирует надежную работу оборудования в течение 8-10 лет.

Использование же дешевого, но менее качественного оборудования не гарантирует бесперебойную работу автоматизированных тепловых пунктов. Как показывает наш опыт, а также опыт других фирм , это оборудование выходит из строя, как правило, через 2-3 года и потребитель начинает ощущать тепловой дискомфорт (см., например, пример 1 из проблемы № 3).

Тепловые испытания теплообменников, проведенные в г. Санкт-Петербурге , показали:

Снижение тепловой эффективности теплообменного аппарата составляет после первого года 5%, после второго – 15%, после третьего более 25 %, после четвертого – 35 %, а после пятого – 40-45%;

Снижение теплопроизводительности аппарата и коэффициента теплопередачи связано с загрязнением поверхности теплообмена как со стороны первичного контура, так и со стороны вторичного контура; эти загрязнения проявляются в виде отложений, причем со стороны первичного контура отложения имеют коричневый цвет, а со стороны вторичного – черный;

Коричневый цвет отложений определяется в основном окислами железа, которые образуются в сетевой воде из-за коррозии внутренней поверхности трубопроводов теплотрасс; данные загрязнения со стороны первичного контура легко удаляются с помощью мягкой тряпки под струей теплой воды;

Черный цвет отложений вторичного контура определяется, в основном, органическими соединениями, которые в большом количестве находятся в воде вторичного контура, которая циркулирует по замкнутому контуру системы отопления здания и не подвергается никакой очистке; удалить отложения со стороны вторичного контура тем же способом, что и с первичного не удается, так как они являются не рыхлыми, а плотными; для очистки теплообменных пластин со стороны вторичного контура приходилось пластины замачивать в керосине на 15-20 мин., а затем они протирались со значительными усилиями влажными тряпками, смоченными в керосине;

Вследствие того, что биологические отложения, образующиеся на пластинах со стороны вторичного контура, имеют очень сильное сцепление (адгезию) с поверхностью металла, безразборная химическая промывка вторичного контура не дает удовлетворительных результатов .

Дешевое оборудование, как правило, используют те внедренческие фирмы, которые не занимаются сервисным обслуживанием внедренного ими оборудования, так как для этого требуется иметь соответствующее оборудование и материалы, а также квалифицированный персонал, т. е. вкладывать значительные средства в развитие своей производственной базы.

Поэтому потребитель находится перед выбором:

Затратить минимум капвложений и внедрить дешевое оборудование (мокророторные насосы, паяные теплообменники и т. д.), которое через 2-3 года в значительной мере утратит свои свойства или придет в полную негодность; при этом эксплуатационные затраты на ремонт и поддержание оборудования после 2-3 лет резко возрастут и могут быть того же порядка, что и первоначальные вложения;

Затратить максимум капвложений, внедрить надежное дорогостоящее оборудование (разборные теплообменники проверенных фирм, например. Альфа-Лаваль, сухороторные насосы с частотным приводом, надежную автоматику и т. д.) и за счет этого значительно снизить свои эксплуатационные расходы.

Выбор остается за потребителем, но не надо забывать, что «скупой платит дважды».

Резюмируя вышеизложенное можно сделать следующие выводы:

1. В Хабаровске в последние 2-3 года начался процесс перехода с устаревших «открытых» систем к современным «закрытым» системам теплоснабжения с внедрением энергосберегающих технологий. Однако чтобы ускорить этот процесс и сделать его необратимым, необходимо:

1.1. Переломить психологию Заказчиков, проектировщиков, монтажников и эксплуатационников, которая заключается в следующем: проще и дешевле внедрять устаревшие традиционные схемы теплоснабжения с однотрубными системами отопления и элеваторными узлами, которые не нуждаются в обслуживании и регулировке, чем создавать себе дополнительную боль и финансовые затруднения, переходя к современным системам теплоснабжения с системами автоматики и регулирования. То есть построить объект с минимумом капитальных затрат, затем передать его, например, муниципалитету, который должен будет выискивать средства на эксплуатацию этого объекта. В результате крайним снова окажется потребитель (гражданин), который будет потреблять «ржавую» воду из системы теплоснабжения, мерзнуть зимой от недотопа и страдать от жары в переходный период (октябрь, апрель) при перетопе, осуществляя форточное регулирование, что приводит к простудным заболеваниям из-за сквозняков.

1.2. Создать специализированные организации, которые бы занимались всей цепочкой: от проектирования и монтажа до пусконаладки и обслуживания современных систем теплоснабжения. Для этой цели необходимо проводить целенаправленную работу по подготовке специалистов в области энергосбережения.

2. При проектировании этих систем необходимо тесно увязывать между собой все элементы систем теплоснабжения: отопление, вентиляцию и ГВС, учитывая не только требования СНиПов и СП, но и рассматривая их под углом с точки зрения эксплуатационников.

3. В отличие от устаревших, традиционных систем, современные системы нуждаются в обслуживании, которое могут осуществлять только специализированные организации, имеющие специальное оборудование и высококвалифицированных специалистов.

СПИСОК ЛИТЕРАТУРЫ

1. О практике применения двухтрубных систем отопления// Инженерные системы. АВОК. Северо-Запад, №3, 2002г.

2. Лебедев гидравлики систем ОВК// АВОК, №5, 2002г.

3. Иванов эксплуатации пластинчатых подогревателей в условиях г. Санкт-Петербурга// Новости теплоснабжения, №5, 2003г.

Похожие публикации