Старинные астрономические приборы. Старинные астрономические инструменты. Папа Римский и дьявольский инструмент

Астрономией люди пытались заниматься с незапамятных времен. Чтобы наблюдать за планетами и звездами, им необходимы были некие инструменты, позволяющие производить расчеты и следить за поведением космических тел. Некоторые из самых интересных инструментов прошлого будут рассмотрены ниже.

Научные приспособления астрономов древности настолько сложны и часто непонятны, что нашим нынешним ученым потребовалось бы несколько месяцев только для того, чтобы разобраться, как ими пользоваться.

«Календарь», найденный на поле «Уоррен»

На поле Уоррен в 1976-ом году заметили странные рисунки, смысл которых ученым был непонятен до 2004 года. Только в этом году они смогли определить, что данные узоры являются неким подобием астрономического календаря. Уорренскому лунному календарю, по мнению исследователей, не менее 10 тыс. лет. Он представляет собой 45-метровую дугу, на которой равномерно расставлены углубления в количестве 12 штук. Каждое углубление соответствует расположению луны в определенном месяце, и даже отображает лунную фазу.

Следует отметить, что описанный ранее календарь старше Стоунхенджа на 6 тыс. лет. Несмотря на это, на нем имеется точка, ориентированная на точку восхода светила в зимнее солнцестояние.

Секстант под названием «Аль-Худжанди» с характерными росписями

Древний астроном, имя которого невозможно выговорить с первого раза (Абу Махмуд Хамид ибн аль Хидр Аль Худжанди), в свое время создал один из самых масштабных приспособлений для астрономической работы. Произошло это в 9-10 веках, и для того времени было невероятным научным прорывом.

Вышеописанная персона создала секстант, выполнив его в виде настенного рисунка. Данный рисунок располагался на 60-градусной дуге между парой внутренних стен строения. Длина дуги, в свою очередь, приравнивается к 43 метрам. Ее создатель поделил на градусы, каждый из которых с точностью ювелиров разделил на 360 отрезков. Таким образом, обыкновенная фреска превратилась в уникальный солнечный календарь, с помощью которого древний астроном совершал наблюдения за Солнцем. На крыше секстанта имелось отверстие, через которое луч нашего светила попадал на календарь, указывая на определенную отметку.

«Вольвеллы» и «человек-зодиак»

В четырнадцатом веке ученые-астрономы нередко в работе использовали странное приспособление, названное «Вольвеллой». Оно представляло собой несколько листов пергаментной бумаги с отверстиями в центре, которых накладывали друг на друга.

С помощью перемещения кругов-слоев «Вольвеллы» ученые могли производить необходимые расчеты, начиная от вычисления фазы Луны, и заканчивая положением светила в Зодиаке.

«Вольвеллу» могли приобрести только богатые и статусные люди, поэтому для некоторых она была скорее модным аксессуаром, но тот, кто умел ею пользоваться, считался осведомленным и грамотным человеком.

Доктора средних веков свято верили в то, что частями тела человека управляют созвездия. Например, за голову отвечало созвездие «Овен», а за интимные участки – «Скорпион». Поэтому вышеописанное приспособление часто применялись для диагностики, помогая врачам определить причины развития заболевания того либо иного органа.

Древнейшие «Солнечные часы»

В современное время такие часы можно встретить в садах и дворах, где они служат ландшафтным декором. В древние времена их использовали не только для вычисления времени, но и для наблюдений за движением светила по небу. Одно из самых древних подобных приспособлений обнаружили в «Долине Царей», которая находится, как известно, в Египте.

Самые древние часы представляют собой известняковую пластину, на которой выгравирован полукруг, разделенный на 12 отрезков. В середине полукруга имелось отверстие, в которое вставлялась палка либо подобное приспособление, отбрасывающее тень. Эти часы произвели в 1500-1070 годах до нашей эры.

Кроме этого, древние «солнечные часы» обнаружили на территории Украины. Они были захоронены более трех тысяч лет назад. Благодаря ним ученые поняли, что представители цивилизации «Зрубны» могли определять широту и долготу.

Диск из Небры

Назвали диск в честь германского города, в котором его нашли в 1999 году. Данную находку признали самым древним изображением космоса среди всех, которые когда-либо находили археологи. В захоронении, где лежал диск, нашли также орудия труда: топор, долото, мечи, отдельные части кольчужного доспеха, возраст которых – 3600 лет.

Сам диск был изготовлен из бронзы, покрытой патиной. На нем имелись вставки из ценного материала золота, изображающие космические тела. Среди данных тел имелись: светило, Луна, звезды «Ориона», «Андромеды», «Кассиопея».

Астрономическая обсерватория «Чанкильо»

Древнюю обсерваторию, найденную на территории Перу, признали самой сложной из всех ныне известный. Ее нашли в 2007 году совершенно случайно, после чего долго пытались определить предназначение загадочного строения.

Обсерватория состоит из тринадцати башен, которые установлены в виде прямой линии, протяженность которой составляет триста метров. Одна башня направлена четко на точку восхода светила в летнее солнцестояние, другое аналогичное сооружение – в зимнее солнцестояние. Соорудили вышеописанную обсерваторию более трех тысяч лет назад. Таким образом, она стала самой древней обсерваторией солнечной, когда-либо найденной на территории Америки.

Атлас «Poetica Astronomica»

Атлас со звездами Гигина признали самым древним творением, в котором изображены и описаны созвездия. По одним данным, его написал Г.Ю.Гигин, живший в период с 64 по 17 годы до нашей эры. Другие приписывают произведение Птолемею.

Переиздали «Poetica Astronomica» в 1482-м году. В данном произведении, кроме созвездий и их описаний, говорится о мифах, связанных с созвездиями. Другие подобные издания предназначались для изучения астрономии, поэтому содержали конкретную и четкую информацию. «Poetica Astronomica», в свою очередь, написана в причудливом и игривом стиле.

«Космический глобус»

«Космический глобус» произвели древнейшие астрономы еще в те времена, когда принято было думать, что все космические тела вращаются вокруг нашей Земли. Первые подобные изделия изготавливали мастера Древней Греции. Первый «глобус космоса», форма которого была аналогичной современному глобусу, произвел немецкий ученый-астроном Й. Шенер.

На сегодняшний день в целостности и сохранности остались только два глобуса Шенера, один из которых, произведенный в 370-ом году до н.э., представлен на фотографии. Это произведение искусства изображает созвездия, расположенные в ночном небе.

«Армиллярная сфера» - самый прекрасный инструмент древних астрономов

Конструкция этого инструмента состоит из центральной точки и колец, окружающих ее. «Армиллярная сфера» появилась задолго до «Космического глобуса», но отображает положение планет не хуже.

Все древние сферы принято было делить на два вида: демонстрационные и наблюдательные. Ими пользовались даже мореплаватели, определяя с их помощью свои координаты. Астрономы, используя сферу, вычисляли экваторы и эклиптические координаты космических тел на протяжении нескольких веков.

Необычная старейшая обсерватория «Эль-Караколь», расположенная в Чичен-Ице

Древнюю исследовательскую станцию соорудили примерно в 455 году до нашей эры. Ее отличает необычное предназначение: с ее помощью наблюдали за перемещением Венеры. К слову, в те времена основными объектами для астрономических наблюдений являлись Солнце и звезды. Венеру считали священным космическим телом майя и другие древние цивилизации, но почему для наблюдений за ней соорудили целую обсерваторию, которая служила еще и храмом, ученым непонятно. Возможно, мы пока недооцениваем эту прекрасную планету.

Астролябия.

Зеркальный телескоп (рефлектор) И. Ньютона.

Телескоп И. Кеплера.

Гигантский телескоп Я. Гевелия.

Квадрант для определения высот небесных светил.

40‑футовый телескоп-рефлектор В. Гершеля.

Телескоп-рефлектор с диаметром зеркала 2,6 м Крымской астрофизической обсерватории.

Вся история астрономии связана с созданием новых инструментов, позволяющих повысить точность наблюдений, возможность вести исследования небесных светил в диапазонах электромагнитного излучения (см. Электромагнитное излучение небесных тел), недоступных невооруженному человеческому глазу.

Первыми еще в далекой древности появились угломерные инструменты. Самый древний из них - это гномон, вертикальный стержень, отбрасывающий солнечную тень на горизонтальную плоскость. Зная длину гномона и тени, можно определить высоту Солнца над горизонтом.

К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант - плоская доска в форме четверти круга, разделенного на градусы. Вокруг его центра вращается подвижная линейка с двумя диоптрами.

Широкое распространение в древней астрономии получили армиллярные сферы - модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т. Браге . Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.

Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения. В совершенствовании конструкций телескопов-рефракторов , имеющих линзовые объективы, большие заслуги принадлежат И. Кеплеру .

Первые телескопы были еще крайне несовершенны, давали нечеткое изображение, окрашенное радужным ореолом.

Избавиться от недостатков пытались, увеличивая длину телескопов. Однако наиболее эффективными и удобными оказались ахроматические телескопы-рефракторы, которые начали изготовляться с 1758 г. Д. Доллондом в Англии.

Для фотографических наблюдений используются астрографы .

Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма , астроспектрограф), фотометрических (астрофотометр), поляриметрических и других наблюдений.

Созданы инструменты, позволяющие вести наблюдения небесных тел в различных диапазонах электромагнитного излучения, в том числе и в невидимом диапазоне. Это радиотелескопы и радиоинтерферометры , а также инструменты, применяемые в рентгеновской астрономии , гамма-астрономии , инфракрасной астрономии.

Для наблюдений некоторых астрономических объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп , коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль , спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.

Важный прибор, необходимый для наблюдений, - астрономические часы .

При обработке результатов астрономических наблюдений используются суперкомпьютеры.

Существенно обогатила наши представления о Вселенной радиоастрономия , зародившаяся в начале 30‑х гг. нашего столетия. В 1943 г. советские ученые Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю. 50‑е гг. XX в. - период необыкновенно быстрого развития радиоастрономии. Ежегодно радиоволны приносили из космоса новые удивительные сведения о природе небесных тел.

Сегодня радиоастрономия использует самые чувствительные приемные устройства и самые большие антенны. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Перед человеком раскрылся радиокосмос - картина Вселенной в радиоволнах.

Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях . Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах.

Атмосфера Земли создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображение небесных тел, поэтому в наземных условиях приходится применять телескопы с ограниченным увеличением (как правило, не более чем в несколько сотен раз). Из‑за поглощения земной атмосферой ультрафиолетовых и большей части длин волн инфракрасного излучения теряется огромное количество информации об объектах, являющихся источниками этих излучений.

В горах воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные. По этой причине еще с конца XIX в. все крупные астрономические обсерватории сооружались на вершинах гор или высоких плоскогорьях. В 1870 г. французский исследователь П. Жансен использовал для наблюдений Солнца воздушный шар. Такие наблюдения проводятся и в наше время. В 1946 г. группа американских ученых установила спектрограф на ракету и отправила ее в верхние слои атмосферы на высоту около 200 км. Следующим этапом заатмосферных наблюдений было создание орбитальных астрономических обсерваторий (ОАО) на искусственных спутниках Земли. Такими обсерваториями, в частности, являлись советские орбитальные станции «Салют». В настоящее время успешно эксплуатируется космический телескоп «Хаббл».

Орбитальные астрономические обсерватории разных типов и назначений прочно вошли в практику современных исследований космического пространства.

и инструменты навигации

Армиллярная сфера

Астролябия

Квадрант

Секста́нт

Хронометр морской

Морской компас

Универсальный инструмент

Армиллярная сфера есть собрание кругов, изображающих важнейшие дуги небесной сферы. Она имеет целью изобразить относительное положение экватора, эклиптики, горизонта и других кругов.

Астролябия (от греческих слов: άστρον - светило и λαμβάνω - беру), планисфера, аналемма - угломерный снаряд, употребляющийся для астрономических и геодезических наблюдений. А. применялась Гиппархом для определения долгот и широт звезд. Она состоит из кольца, которое устанавливалось в плоскости эклиптики, и перпендикулярного к нему кольца, на котором отсчитывалась широта наблюдаемого светила, после того как на него были наведены диоптры инструмента. По горизонтальному кругу отсчитывалась разность долгот между данным светилом в каким-нибудь другим. В позднейшее время А. была упрощена, в ней был оставлен только один круг, посредством которого мореплаватели отсчитывали высоту звезд над горизонтом. Круг этот подвешивался на кольце в вертикальной плоскости, и посредством алидады, снабженной диоптрами, наблюдались звезды, высота которых отсчитывалась на лимбе, к которому впоследствии приделывался нониус. Позднее вместо диоптр стали употреблять зрительные трубы, и, постепенно совершенствуясь, А. перешла в новый тип инструмента - теодолит, который и употребляется теперь во всех тех случаях, когда требуется некоторая точность измерений. В землемерном искусстве А. еще продолжает применяться, где при достаточно тщательной градуировке она позволяет измерять углы с точностью до минут дуги.

Гномо н (др.-греч. γνώμων - указатель) - древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест), позволяющий по наименьшей длине его тени (в полдень) определить угловую высоту солнца.

Квадрант (лат. quadrans, -antis, от quadrare - сделать четырехугольным) - астрономический инструмент, для определения зенитальных расстояний светил.

Октант (в морском деле - октан) - угломерный астрономический инструмент. Шкала октанта составляет 1/8 часть окружности. Октант применялся в мореходной астрономии; практически вышел из употребления.

Секстант (секстан) - навигационный измерительный инструмент, используемый для измерения высоты светила над горизонтом с целью определения географических координат той местности, в которой производится измерение.

Квадрант, октант и секстант отличаются только долей окружности (четвёртая, восьмая и шестая часть соответственно). В остальном это тот же прибор. Современный секстант имеет оптический визир.

Астрономический компендиум

представляет собой набор небольших инструментов для математических расчетов в едином футляре. Он обеспечивал пользователю множество вариантов в готовом формате. Это был не дешевый набор и, очевидно, указывал на богатство владельца. Этот сложный экспонат был изготовлен Джеймсом Кинвином для Роберта Деверю, второго графа Эссекса (1567 – 1601), чье оружие, гребень шлема и девиз выгравированы на внутренней стороны крышки. В компендиум входят пассажный инструмент для определения времени ночи по звездам, перечень широт, магнитный компас, перечень портов и гаваней, вечный календарь и лунный указатель. Компендиум мог использоваться для определения времени, высоты прилива в портах, а также календарных расчетов. Можно сказать, что это древний миникомпьютер.

Птолемей , а полностью - Клавдий Птолемей (Claudius Ptolemaeus) родился между 127-145 гг. нашей эры в Александрии (Египет), древний астроном, географ и математик, считавший Землю центром вселенной ("Птолемеева система"). К сожалению, о его жизни в настоящее время известно очень мало. (За исключением того, что династия Птолемеев утвердилась в Египте в результате завоеваний Александра Македонского, который отдал Египет в награду одному из своих выдающихся военачальников. Известная Египетская царица Клеопатра также носила фамилию Птолемей . - С.А.Астахов.)

Результаты его работ по астрономии были сохранены в его большой книге "Mathematike syntaxis" ("Математический Сбор"), которая, в конечном счете, становится известной как "Ho megas astronomos" ("Большой астроном"). Однако для ссылок на эту книгу в 9-м столетии арабские астрономы использовали греческий термин "Megiste" ("превосходный"). Когда определенный арабский артикль "al" (другое значение - " как", по-английски - "like") был записан слитно, название становится известным как "Almagest" ("Альмагест"), которое используется и сегодня.

Альмагест подразделяется на 13 отдельных томов , каждый из которых рассматривает определенное астрономическое понятие, относящееся к звездам и объектам солнечной системы (Земля и все другие небесные тела, относящиеся к Солнечной системе). Без всяких сомнений, Альмагест является энциклопедией природы, что и сделало его таким полезным для многих поколений астрономов и оказало на них глубочайшее влияние. В сущности, это синтез полученных Древнегреческой астрономией результатов, а также основной источник сведений о работах Гиппарха, по-видимому, являвшимся величайшим астрономом древности. В книге часто трудно определить, какие сведения принадлежат Птолемею, а какие Гиппарху, потому что Птолемей значительно дополнил данные Гиппарха своими собственными наблюдениями, по всей видимости, пользовавшись аналогичными или похожими инструментами. Например, если Гиппарх скомпоновал свой звездный каталог (первый такого типа) на основе данных о 850-ти звездах, то Птолемей расширил число звезд в его собственном каталоге до 1,022.

Птолемей снова и снова повторял наблюдения движений Солнца, Луны и планет Солнечной системы и корректировал данные Гиппарха - на этот раз для того, чтобы сформулировать собственную геоцентрическую теорию, которая в настоящее время известна в качестве Птолемеевой модели строения солнечной системы. В первой книге Альмагеста Птолемей подробно описывает эту геоцентрическую систему и пытается с помощью различных аргументов доказать, что в центре вселенной должна находится неподвижная Земля. Необходимо отметить его весьма последовательное доказательство, что в случае движения Земли, как это предполагали до этого некоторые из греческих философов, с течением времени на звездном небе проявятся и должны быть обнаружены некоторые явления, в частности параллаксы звезд. С другой стороны, Птолемей доказывал, что, поскольку все тела падают в центр вселенной, именно Земля и должна быть там расположена в соответствии с направлениями свободно падающих капель воды. Более того, если Земля не центр, тогда она должна вращаться с периодом в 24 часа, и, следовательно, тела, брошенные вертикально вверх, не должны падать на то же самое место, как это имеет место на практике. Птолемей смог доказать, что к тому времени не было получено ни одного противоречащего этим аргументам наблюдения. В результате геоцентрическая система стала абсолютной истиной для западного христианского мира вплоть до 15-го столетия, когда была вытеснена гелиоцентрической системой, разработанной великим польским астрономом Николаем Коперником.

Птолемей установил следующей порядок для объектов Солнечной системы: Земля (центр), Луна, Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн. Для объяснения неравномерностей движения этих небесных тел ему, точно так же, как и Гиппарху, потребовалась система дифферентов и эпициклов или один из подвижных эксцентров (обе системы разработаны Аполлоном из Пергама, греческим геометром 3-го столетия до нашей эры), чтобы описывать их перемещения только и исключитеьно с помощью равномерного движения по окружностям.

В Птолемеевой системе дифференты являются большими кругами с центром на Земле, а эпициклы - круги меньшего диаметра, центры которых равномерно перемещаются по окружностям дифферентов . При этом Солнце, Луна и планеты перемещаются по окружностям своих собственных эпициклов. Или, для подвижного эксцентра существует окружность с центром, смещенным относительно Земли в сторону планеты, перемещающейся вокруг этой окружности. Обе схемы являются математически эквивалентными. Но даже с введением этих понятий могли быть объяснены еще не все наблюдавшиеся элементы движения планет. Введя в астрономию еще одно понятие, Птолемей с блеском показал свою гениальность. Он предположил, что Земля должна быть расположена на некотором расстоянии от центра дифферента для каждой планеты и, что центр планетарного дифферента и эпицикла для принятого равномерного циклического движения является воображаемой точкой, лежащей между местоположением Земли и другой воображаемой точкой, которую он назвал эквантом. При этом Земля и эквант лежат на одном диаметре соответствующего планетарного дифферента. Кроме того, он считал, что расстояние от Земли до центра дифферента должно быть равно расстоянию от центра дифферента до экванта. При помощи этой гипотезы Птолемей смог гораздо точнее объяснить множество наблюдавшихся элементов планетных движений.

В Птолемеевой системе плоскость эклиптики является явным солнечным годовым путем на фоне звезд . Следует положить, что плоскости дифферентов планет наклонены на небольшие углы относительно плоскости эклиптики, но плоскости их эпициклов должны быть наклонены на те же самые углы относительно дифферентов, чтобы плоскости эпициклов всегда были параллельными плоскости эклиптики. Плоскости дифферентов Меркурия и Венеры выбирались такими, чтобы обеспечить колебания этих планет относительно плоскости эклиптики (выше - ниже), и, следовательно, плоскости их эпициклов были подобраны, чтобы обеспечить соответствующие колебания уже относительно их дифферентов.

Однако, еще необходимо было объяснить так называемое ретроградное (обратное) движение, которое периодически наблюдалось в виде явных обратных петель траекторий внешних планет на фоне звезд (для Марса, Юпитера и Сатурна).

Хотя Птолемей и понимал, что планеты располагаются значительно ближе к Земле, чем "фиксированные" или "неподвижные" звезды, он, по всей видимости, верил в физическое существование "кристаллических сфер", к которым - как тогда говорили - прикреплены все небесные тела . За пределами сферы неподвижных звезд, Птолемей предполагал существование других сфер, заканчивающихся связью с "primum mobile" ("первичным движителем" - может быть, Богом?), который и обладал необходимой мощностью для обеспечения движения остальных сфер, составляющих всю наблюдаемую вселенную.

Как, в первую очередь, геометр, Птолемей выполнил несколько важнейших математических работ . Разработанные им новые геометрические теоремы и доказательства он изложил в книге, названной "Аналемма" ("Peri analemmatos" - греч., "De analemmate" - лат.), где подробно обсудил свойства проекций точек на небесную сферу (воображаемая сфера, расширяющаяся наружу с Земли для бесконечности, на поверхность которой проецируются расположенные в пространстве объекты), в частности, на три плоскости, расположенных между собой по правилу правого винта ("буравчика", если исходить из школьного учебника физики) под прямыми углами друг к другу - горизонт, меридиан, и первичная вертикаль. В другой книге - "Planisphaerium" - Птолемей имеет дело со стереографическим проекциями - вычерчиванием проекций твердого тела на плоскость - однако, и здесь он использовал южный полюс небесной сферы в качестве центра своих проекций. (Точка пересечения линий проекций используется для получения перспективных искажений, например, в аксонометрических проекциях.)

Кроме того, Птолемей разработал собственный календарь , который, кроме предсказаний погоды, указывал времена восходов и заходов звезд в утренние и вечерние сумерки. Другие математические публикации содержат работу (в двух томах), носящую название "Hypotheseis ton planomenon" ("Планетарная гипотеза"), и две отдельных геометрических публикации, одна из которых содержит обоснование существования не более чем трех измерений пространства; в другой он предпринимает попытку доказательства постулата о параллельных Эвклида. Согласно одному обзору Птолемей написал три книги по механике; другое руководство, тем не менее, упоминает только об одной - "Peri ropon" ("О балансировке").

Работы Птолемея в области оптических явлений были зафиксированы в "Оптике" ("Optica"), оригинальное издание которой состояло из пяти томов. В последнем томе он работает с теорией преломления (изменение направления света и других энергетических волн при переходе ими границы раздела среды с одной плотностью в среду с другой плотностью) и при этом обсуждает изменения местоположения небесных светил в зависимости от высоты стояния над горизонтом. Это было первой документальной попыткой объяснения реально наблюдаемого явления (атмосферной рефракции). Следует упомянуть и о трехтомной монографии Птолемея о музыке, известной, как "Гармоника" ("Harmonica").

Репутация Птолемея, как географа, зиждется, главным образом, на его "Geographike hyphegesis" ("Справочнике по географии"), который был подразделен на восемь томов; и которые содержали информацию о том, как создавать карты и списки мест в Европе, Африке и Азии и создавать таблицы местоположения географических объектов по широте и долготе. Отметим, тем не менее, что в Руководстве было и много ошибок - например, экватор был установлен слишком далеко к северу, а величина окружности Земли была почти 30 процентов меньше той, которая, строго говоря, уже была достаточно точна определена (Эратосфеном); также существовали некоторые противоречия между текстом и картами. Конечно же, Руководство в целом не может считаться "хорошей географией", потому что Птолемей ничего не упоминает о климате, природных условиях, жителях или специфических характеристиках стран, с которыми он имеет дело. Также небрежны его географические проработки таких объектов, как реки и горные области. Т.е. работа получилась весьма ограниченного применения.

Небесные светила интересовали людей с незапамятных времён. Ещё до революционных открытий Галилея и Коперника астрономы предпринимали неоднократные попытки выяснить закономерности и законы движения планет и звёзд и использовали для этого специальные инструменты. Инструментарий древних астрономов был настолько сложен, что современным учёным потребовались годы, чтобы разобраться в их устройстве.

1. Календарь из Уоррен Филда

Календарь из Уоррен Филда.


Хотя странные углубления на поле Уоррен обнаружили с воздуха еще в 1976 году, только в 2004 году было определено, что это древний лунный календарь. Как полагают ученые, найденному календарю порядка 10 000 лет. Он выглядит как 12 углублений, расположенных по дуге в 54 метра. Каждая лунка синхронизирована с лунным месяцем в календаре, причем с поправкой на лунную фазу. Удивительно также то, что календарь в Уоррен Филд, который был построен за 6000 лет до Стоунхенджа, ориентирован на точку солнечного восхода в день зимнего солнцестояния.

2. Секстант Аль-Худжанди в росписи

Секстант Аль-Худжанди в росписи.


Сохранилось очень мало сведений о Абу Махмуд Хамид ибн аль-Хидр Аль-Худжанди, кроме того, что он был математиком и астрономом, который жил на территории современных Афганистана, Туркменистана и Узбекистана. Также известно, что он создал один из крупнейших астрономических инструментов в 9-10 веках. Его секстант был сделан в виде фрески, расположенной на 60-градусной дуге между двумя внутренними стенами здания. Эта огромная 43-метровая дуга была поделена на градусы. Мало того, каждый градус был с ювелирной точностью разделен на 360 частей, что сделало фреску потрясающе точным солнечным календарем. Над дугой Аль-Худжанди располагался куполообразный потолок с отверстием посередине, сквозь которое солнечные лучи падали на древний секстант.

3. Вольвеллы и зодиакальный человек

Вольвеллы и зодиакальный человек.


В Европе на рубеже 14-го века учеными и врачами использовалась довольно странная разновидность астрономических инструментов – вольвеллы. Они выглядели, как несколько круглых листов пергамента с дыркой в центре, наложенные друг на друга. Это позволяло перемещать круги, чтобы рассчитать все необходимые данные - от фаз Луны до положения Солнца в Зодиаке. Архаичный гаджет помимо своей основной функции также являлся символом статуса – только самые богатые люди могли обзавестись вольвеллой.

Также средневековые врачи верили, что каждая часть человеческого тела управляется своим созвездием. К примеру, за голову отвечал Овен, а за гениталии – Скорпион. Поэтому для диагностировки врачи использовали вольвеллы, чтобы рассчитать текущее положение Луны и Солнца. К сожалению, вольвеллы были довольно хрупкими, поэтому сохранились лишь очень немногие из этих древних астрономических инструментов.

4. Древние солнечные часы

Древние солнечные часы.


Сегодня солнечные часы служат разве что для украшения садовых лужаек. Но когда-то они были необходимы для отслеживания времени и движения Солнца по небу. Одни из старейших солнечных часов были найдены в Долине царей в Египте. Они датируются 1550 - 1070 годами до н.э. и представляют собой круглый кусок известняка с нарисованным на нем полукругом (разделенным на 12 секторов) и отверстием в середине, в который вставлялся стержень, отбрасывающий тень. Вскоре после обнаружения египетских солнечных часов, подобные были найдены в Украине. Они были захоронены с человеком, который умер 3200 - 3300 лет назад. Благодаря украинским часам ученые узнали, что цивилизация Зрубна обладала знаниями геометрии и умела высчитывать широту и долготу.

5. Небесный диск из Небры

Небесный диск из Небры.


Названный по имени немецкого города, где он был обнаружен в 1999 году, «небесный диск из Небры» является старейшим изображением космоса, когда-либо найденным человеком. Диск был захоронен рядом с долотом, двумя топорами, двумя мечами, и двумя кольчужными наручами около 3600 лет назад. На бронзовом диске, покрытом слоем патины, были золотые вставки, изображающие Солнце, Луну и звезды из созвездий Орион, Андромеда и Кассиопея. Никто не знает, кто сделал диск, но расположение звезд говорит о том, что создатели были расположены на той же широте, что и Небра.

6. Астрономический комплекс Чанкильо

Астрономический комплекс Чанкильо.


Древняя астрономическая обсерватория Чанкильо в Перу является настолько сложной, что ее истинное предназначение было обнаружено только в 2007 году с помощью компьютерной программы, предназначенной для выравнивания панелей солнечных батарей. 13 башен комплекса выстроены по прямой линии протяженностью 300 метров вдоль холма. Изначально ученые думали, что Чанкильо - фортификационные сооружения, но для форта это было невероятно плохое место, поскольку в нем не было ни оборонительных преимуществ, ни проточной воды, ни источников пропитания.

Но потом археологи поняли, что одна из башен смотрит на точку восхода солнца при летнем солнцестоянии, а другая – на точку восхода солнца при зимнем солнцестоянии. Построенные около 2300 лет назад башни являются старейшей солнечной обсерваторией в Америке. По этому древнему календарю до сих пор можно определить день года с максимум двухдневной погрешностью. К сожалению, огромный солнечный календарь из Чанкильо - это единственный след цивилизации строителей этого комплекса, которые предшествовали инкам более чем на 1000 лет.

7. Звездный атлас Гигина

Звездный атлас Гигина.


Звездный атлас Гигина, также известный как «Poetica Astronomica» был одним из первых сочинений с изображениями созвездий. Хотя авторство атласа спорно, он иногда приписывается Гаю Юлию Гигину (римскому писателю, 64 г. до н.э. - 17 г. н.э.). Другие утверждают, что работа имеет сходство с трудами Птолемея.

В любом случае, когда Poetica Astronomica была переиздана в 1482 году, она стала первым печатным произведением, в котором были показаны созвездия, а также мифы, связные с ними. В то время как другие атласы предоставляли более конкретную математическую информацию, которая могла быть использована для навигации, Poetica Astronomica представляла собой более причудливую, литературную интерпретацию звезд и их историю.

8. Небесный глобус

Небесный глобус.


Небесный глобус появился еще тогда, когда астрономы считали, что звезды перемещаются по небу вокруг Земли. Небесные глобусы, которые были созданы, чтобы отобразить эту небесную сферу, начали создавать еще древние греки, а первый глобус в форме, аналогичной современным глобусам, был создан немецким ученым Йоханнесом Шёнером. На данный момент сохранились только два небесных глобуса Шёнера, которые являются настоящими произведениями искусства, изображающими созвездия в ночном небе. Старейший сохранившийся пример небесного глобуса датируется около 370 г. до н.э.

9. Армиллярная сфера

Армиллярная сфера.


Армиллярная сфера - астрономический инструмент, в котором несколько колец окружают центральную точку - была далеким родственником небесного глобуса. Существовали два разных типа сфер - наблюдательная и демонстрационная. Первым из ученых, кто использовал подобные сферы, был Птолемей. С помощью этого инструмента можно было определить экваториальные или эклиптические координаты небесных тел. Наряду с астролябией, армиллярная сфера использовалась моряками для навигации на протяжении многих веков.

10. Эль-Караколь, Чичен-Ица

Эль-Караколь, Чичен-Ица.


Обсерватория Эль-Караколь в Чичен-Ице была построена между 415 и 455 г. н.э. Обсерватория была очень необычной - в то время как большинство астрономических инструментов были настроены на наблюдение за движением звезд или Солнца, Эль-Караколь (в переводе «улитка») была построена для наблюдения за движением Венеры. Для майя Венера была священна – буквально все в их религии основывалось на культе этой планеты. Эль-Караколь помимо того, что был обсерваторией, также являлась храмом бога Кетцалькоатля.

Похожие публикации