Кто из ученых открыл закон наследственности. Основные законы наследования и наследственности. Условия выполнения закона независимого наследования

Двадцатый век для биологии начался с сенсационного открытия. Одновременно три ботаника - голландец Гуго де Фриз, немец К. Корренс и австриец К. Чермак - сообщили, что еще 35 лет назад никому не известный чешский ученый Грегор Иоганн Мендель (1822-1884) открыл основные законы наследования отдельных признаков. 1900-й год, год вторичного открытия законов Менделя, принято теперь считать годом рождения науки о наследственности - генетики.

Внешне жизнь Менделя была тихой и малоприметной. Он родился в семье крестьянина-садовода. Мальчик страстно стремился к знаниям. У родителей не было средств на образование сына. Ценой больших усилий и лишений Иоганн окончил гимназию, но университет был для него недоступен.

Двадцатилетним юношей Мендель переступил порог августинского монастыря в тихом богемском городке Брюнне (теперь г. Брно в Чехословакии). Можно было считать, что судьба его определилась: вместе с саном послушника он получил новое имя - Грегор и начал изучать священное писание. Прошло четыре года, и Мендель стал священником. Но вместо того, чтобы читать проповеди, причащать и исповедовать, он покинул святую обитель. Естествознание, точные науки влекли его по-прежнему. На средства монастыря Мендель едет в Вену и пытается поступить в университет, чтобы основательно изучить физику и математику. Потерпев неудачу, он возвращается в Брюнн.

Здесь священник Мендель начинает преподавать в реальном училище физику, математику и другие естественные науки и выкраивает в монастырском саду крохотный участок земли, чтобы начать опыты, которым было суждено прославить его имя на века.

В 1865 г. он опубликовал результаты своих работ, заложив научные основы генетики. Основная цель, которую преследовал Мендель, - узнать законы, определяющие развитие потомков от скрещивания родителей, различавшихся своими наследственными признаками. Все признаки, которыми характеризовались и отцовский и материнский организмы, были заложены в их половых клетках, и организм, образовавшийся из слившихся половых клеток (материнской яйцеклетки и отцовского сперматозоида), должен был нести признаки и отца и матери.

Но как, по каким законам комбинируются эти признаки у потомков, предшественникам Менделя не удалось выяснить. Ошибка этих ученых заключалась в том, что они пытались в одном скрещивании проследить за судьбой многих признаков, да при этом еще плохо подбирали пары для скрещивания, и все безнадежно запутывалось. Нужно было упростить задачу, не пытаться разрешить все проблемы сразу, но это-то и оказалось самым трудным.

Менделю помогла его склонность к точным наукам. Первое, на что он обратил внимание,- это число признаков, за которыми нужно следить. Важно было так подобрать пары для скрещивания, чтобы скрещиваемые организмы не отличались друг от друга ничем, кроме одного признака. Решив уравнение первой степени, можно перейти и к более сложным задачам. Как ни проста эта мысль Менделя, она была большим шагом вперед.

Но какие организмы взять для скрещивания? Мендель и здесь решил идти по пути максимального упрощения задачи. Он остановил свое внимание на растениях, причем на тех, которые опыляются собственной пыльцой. На перекрестноопыляющиеся растения ветер может случайно занести пыльцу с какого-нибудь другого растения, и тогда весь опыт пойдет насмарку. Из самоопылителей он выбрал горох.

Мендель перебрал 34 сорта гороха и оставил для опытов только 7 пар сортов. Сорта каждой пары различались лишь одним признаком. У одного сорта семена были гладкими, у другого - морщинистыми; стебель одного сорта был высокий, до 2 м, у другого еле-еле достигал 60 см; окраска венчика цветка у гороха одного сорта была пурпурной, у другого - белой.

В течение трех лет Мендель аккуратно высевал отобранные растения и убедился, что это чистые сорта, свободные от примесей. Затем Мендель приступил к скрещиваниям. У растения с пурпурным венчиком цветка он удалил тычинки с пыльниками и перенес на рыльце пестика пыльцу от растения с белыми цветками. Прошел положенный срок, растение завязало плоды, и осенью в руках ученого были семена гибрида. Когда весной Мендель высеял семена гибрида в почву и дождался распускания бутонов, он обнаружил, что все цветки гибридных растений имели такую же пурпурную окраску, как и один из родителей (материнское растение).

Что же произошло? Может быть, пыльца белоцветкового растения оказалась недейственной? Но в таком случае никаких плодов не образовалось бы, ведь собственная пыльца материнского растения была удалена еще в тычинках. Может, опыту помешала посторонняя пыльца, занесенная случайно с красноцветкового растения? Но горох - строгий самоопылитель, и возможность заноса чужой пыльцы исключена. Но самое главное - в других скрещиваниях (сортов, различавшихся другими признаками) Мендель получил принципиально тот же результат. Во всех случаях у потомков первого скрещивания проявлялся признак только одного из родителей. Один из признаков оказался настолько сильным, что полностью подавил проявление другого признака. Мендель назвал его доминантным. Непроявившийся, слабый признак получил название «рецессивный». Так Мендель открыл первое правило, или закон, наследственности: в гибридах первого поколения не происходит никакого взаимного растворения признаков, а наблюдается преобладание, доминирование одного (сильного) признака над другим (слабым) признаком.

В то же лето Мендель провел вторую часть опыта. На этот раз он скрестил между собой пурпурно-красных братьев и сестер, полученных после первой гибридизации. Полученные от нового скрещивания семена он высеял следующей весной. И вот на грядках зазеленели всходы. Какими будут цветки? Казалось, что исход опыта можно угадать безошибочно. Какое потомство может быть от скрещивания черной собаки с черной собакой? Очевидно, черная собака. А от скрещивания красноцветкового гороха с красноцветковым горохом? Очевидно, только горох с красными цветками. Но когда распустились бутоны, Мендель обнаружил, что у четверти растений окраска венчиков была белой. Признак белой окраски, казалось, исчезнувший после первого скрещивания, вновь появился у «внуков». Произошло то, что Мендель метко назвал расщеплением признаков.

Оказывается, при соединении зачатков белоцветкового и красноцветкового растений наследственные факторы белых цветков не растворялись, не исчезали, а лишь временно подавлялись сильными доминантными факторами краснолепестковости. Внешний вид таких гибридов был обманчив. Гибридная природа выявлялась только после второго скрещивания. Когда подавленный фактор белоцветковости одного гибридного растения встречался с таким же подавленным фактором второго гибридного растения, у их потомков развивались белые цветки. Закономерность появления у потомков второго поколения признаков, подавленных в гибридах первого поколения, Гуго де Фриз назвал в 1900 г. вторым законом Менделя или законом расщепления.

Когда Мендель проанализировал, у какого количества гибридов второго поколения появляются признаки доминантные и рецессивные, он обнаружил во всех случаях одну и ту же численную закономерность. После скрещивания гороха с гладкими и морщинистыми семенами Мендель получил 253 семени. Все они были гладкими. После скрещивания гладкосеменных гибридов между собой произошло в следующем поколении расщепление. Образовалось 7324 семени: 5474 гладких и 1850 морщинистых. Отношение гладких (доминантный признак) к морщинистым (рецессивный признак) равнялось 2,96: 1. В другом опыте, где наблюдалось наследование окраски семян, из 8023 семян, полученных после второго скрещивания, 6022 оказались желтыми, а 2001 - зелеными. Отношение желтых к зеленым равнялось 3,01: 1. Мендель сделал подобные расчеты для всех семи пар сортов. Результат был везде один и тот же. Расщепление доминантных и рецессивных признаков равнялось в среднем 3: 1. Мендель понимал, что обнаруженная им закономерность не может быть справедливой для отдельно взятого растения, она проявляется только при скрещивании большого числа организмов.

Ученый не ограничился моногибридным скрещиванием, т. е. таким, когда организмы различались только одним признаком. Основываясь на открытых закономерностях, он сначала рассчитал, а затем доказал на опыте, как происходит расщепление признаков в любых случаях. Мендель проверил свои выводы в опытах с растениями, различавшимися двумя, а затем и тремя признаками. Этого было достаточно, чтобы убедиться, что и в более сложных случаях его формулы верны.

Итак, Мендель сначала изучил наследственную устойчивость сортов гороха, затем обнаружил правило доминирования, позже расщепления, после этого проанализировал количественные закономерности расщепления для организмов, различавшихся одним, двумя и тремя признаками, наконец, дал формулы для любых скрещиваний. Все усложняя и усложняя свою работу, он поднимался ступенька за ступенькой к вершине своей теории - предсказанию принципов устройства генетического материала.

И именно этим предсказанием он опередил современную ему науку почти на полстолетия. Во времена Менделя ничего не было известно о материальных носителях наследственности - генах, а он описал их свойства подобно тому, как астрономы предсказывали существование еще никем не обнаруженных планет. Мендель рассуждал так: раз существует доминантность и рецессивность, проявляющаяся при скрещиваниях, - значит, половые клетки несут наследственные факторы, из которых один определяет свойство доминантности, другой - рецессивности. Так он предсказал существование факторов, позднее названных генами, каждый из которых отвечает за свойство определенного признака.

Раз эти половые факторы сочетаются в клетках гибридного организма, то все его клетки несут по два фактора одного признака. В зависимости от природы этих факторов организм будет содержать одинаковые факторы (такие организмы стали называть гомозиготными) или разные факторы (организм, гетерозиготный по данному признаку). Это и объясняло, почему при скрещивании организмов, внешне абсолютно похожих друг на друга, в потомстве вдруг появляются особи, внешне непохожие на своих прямых родителей, а напоминающие «деда» или «бабушку».

И наконец, Мендель высказывает предположение, которое по праву считают одним из самых важных его законов. Он приходит к мысли, что половые клетки, (гаметы) несут только по одному задатку каждого из признаков и свободны (чисты) от других задатков этого же признака. Этот закон получил название «закон чистоты гамет».

После восьмилетнего труда Мендель сообщил о своих результатах. Его работа была опубликована в журнале Брюннского общества естествоиспытателей. Это провинциальное издание было мало известно среди ученых, издавалось оно небольшим тиражом, и не мудрено, что никакого эффекта в ученом мире статья Менделя не произвела.

После 1868 г. Мендель полностью оставил свои опыты. В это же время он начал слепнуть. Сказалось нечеловеческое напряжение, с каким он на протяжении более 10 лет разглядывал и сортировал десятки тысяч растений, цветков, стеблей, листьев, семян. В 1884 г., так и не получив признания, великий чешский ученый Грегор Иоганн Мендель скончался.

А спустя 16 лет весь научный мир узнал об открытиях Менделя. Сотни ученых во всем мире стали продолжать его исследования; позже законы Менделя удалось объяснить поведением хромосом. Уже в наши дни гены были изучены на молекулярном уровне и материальные носители наследственности, существование которых предсказал Мендель, стали изучать с помощью методов биологии, физики, химии и математики.

Кто есть кто в мире открытий и изобретений Ситников Виталий Павлович

Как люди открыли законы наследственности?

Каждое живое существо на нашей планете, будь то животное или растение, производит потомство только того же вида, к которому относится само. Это происходит именно так вследствие действия законов наследственности.

Сказанное выше отнюдь не означает, что потомок двух родителей обязательно должен походить на них по своему внешнему виду, физическому или умственному развитию. Эти различия также вытекают из законов наследственности.

Каждое существо отличается от других индивидуальным набором черт – признаков наследственных и приобретенных. Наследственными признаками являются такие, которые формируются у данной особи в тот самый миг, когда ее жизнь зарождается, причем источник их находится внутри нее самой. Изучением всех вопросов, связанных с наследственностью, занимается наука генетика. Начало ей было положено благодаря работам австрийского монаха и ученого Грегора Менделя, жившего в середине XIX века.

В своем саду Мендель ставил эксперименты по наследственности у сладкого гороха. Он обнаружил, что целый ряд различных факторов определенным образом влияет на то, какое потомство вырастает из семян, полученных от взрослых растений. В то время, однако, Мендель не мог установить истинную природу этих факторов. Это было сделано его последователями, назвавшими их генами. Признание истинности учения Менделя произошло не сразу. Лишь в 1900 году, 16 лет спустя после его смерти, другие ученые осознали важность сделанных им открытий. Правила, сформулированные на основе этих открытий, получили название законов Менделя.

Из книги 100 великих научных открытий автора Самин Дмитрий

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ В 1900 году независимо друг от друга трое ботаников - К. Корренс (Германия), Г. де Фриз (Голландия) и Э. Чермак (Австрия) обнаружили в своих опытах открытые ранее Менделем закономерности. Затем, натолкнувшись на его работу, они вновь

Из книги Большая Советская Энциклопедия (КЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (КР) автора БСЭ

Из книги Большая Советская Энциклопедия (ХР) автора БСЭ

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Благодаря какой случайности Грегор Мендель был заслуженно признан основоположником учения о наследственности? В середине XIX века австрийский монах и ботаник-любитель Грегор Мендель (1822–1884) проводил опыты по скрещиванию (посредством искусственного опыления) растений

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Люди, люди! Порождения крокодилов! см. О люди! Порождения

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

3.5. Закономерности наследственности, их цитологические основы. Моно– и дигибридное скрещивание. Закономерности наследования, установленные Г. Менделем. Сцепленное наследование признаков, нарушение сцепления генов. Законы Т. Моргана. Хромосомная теория

Из книги Чудеса: Популярная энциклопедия. Том 2 автора Мезенцев Владимир Андреевич

«Алфавит» наследственности Как наглядно представить строение ДНК? Вообразите длинную-длинную веревочную лестницу, закрученную в виде штопора. Выпрямите ее и представьте, что ее боковины - длинные цепи двух чередующихся веществ: сахара и фосфора. Эти цепи составляют

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Груз наследственности Наследственные болезни… Еще совсем недавно они были, что называется, судьбой человека. Успехи медицинской генетики потеснили эту судьбу. Во многих случаях врачи могут теперь повлиять на такие заболевания. Анализ крови, исследование околоплодной

Из книги Географические открытия автора Хворостухина Светлана Александровна

Из книги 100 великих курьезов истории автора Веденеев Василий Владимирович

Как открыли Южное полушарие Одним из самых древних географических открытий, сделанных человеком, является открытие Южного полушария. Современные ученые утверждают, что свидетельства тому можно обнаружить в Библии: «Царь Соломон также сделал корабль… И послал Хирам на

Из книги Символика тюрем [Нравы уголовного мира всех стран и народов] автора Трус Николай Валентинович

Как китайцы открыли мир В начале XV в. лучшие в мире суда строили в Китае. Огромная флотилия, которой командовал адмирал Чжэн Хэ, бороздила воды Индийского океана. Китай находился на пороге великих географических открытий. Корабли Срединной империи готовы были обогнуть

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Блатные «законы» К основным «законам» сообщества рецидивистов можно отнести семь основных правил:1. Главной обязанностью члена группировки являлась беззаветная поддержка «воровской идеи». Предательство, совершенное под пытками, в состоянии наркотического опьянения и

Из книги Большая книга мудрости автора

Как люди открыли законы наследственности? Каждое живое существо на нашей планете, будь то животное или растение, производит потомство только того же вида, к которому относится само. Это происходит именно так вследствие действия законов наследственности.Сказанное выше

Из книги Всемирная история в изречениях и цитатах автора Душенко Константин Васильевич

Люди См. также «Близкие люди», «Великие люди», «Человек» Люди подобны цветам – четыре миллиарда нарциссов. Уршула Зыбура* Общего у людей только одно: все они разные. Роберт Зенд* Для человека заурядного все люди на одно лицо. Блез Паскаль Большая часть людей друг друга

Из книги автора

ЗАКОНЫ МАНУ древнеиндийский трактат(между II в. до н. э. – II в. н. э.)1Десятилетнего брахмана и столетнего царя следует считать отцом и сыном, но из них двоих отец – брахман.«Законы Ману», II, 135? Отд. изд. – М., 1960, с. 431аСледует считать врагом соседа и сторонника врага, другом

Начиная с 1856 года, Грегор Мендель проводил опыты с горохом в монастырском саду.

В своих опытах по скрещиванию гороха Грегор Мендель показал, что наследственные признаки передаются дискретными частицами (которые сегодня называются генами).

Чтобы оценить этот вывод, нужно учесть, что в духе того времени наследственность считалось непрерывной, а не дискретной, в результате чего, как полагали, у потомков признаки предков «усредняются».

В 1865 году он сделал доклад о своих экспериментах в Брюннском (ныне это город Брно в Чехии) обществе естествоиспытателей. На заседании ему не было задано ни одного вопроса. Через год статья Менделя «Опыты над растительными гибридами» была опубликована в трудах этого общества. Том был разослан в 120 университетских библиотек. Кроме этого, автор статьи заказал дополнительно 40 отдельных оттисков своей работы, почти все из которых разослал известным ему ботаникам. Откликов также не последовало…

Вероятно, сам учёный разуверился в своих опытах, поскольку провёл серию новых экспериментов по скрещиванию ястребинки (растение семейства астровых) и затем – по скрещиванию разновидностей пчёл. Результаты, ранее полученные им на горохе, не подтвердились (современные генетики разобрались в причинах этой неудачи). А в 1868 году Грегор Мендель был избран настоятелем монастыря и более к биологическим исследованиями не возвращался.

«Открытие Менделем основных принципов генетики игнорировалось в течение тридцати пяти лет после того, как о нём не только был сделан доклад на заседании научного общества, но даже опубликованы его результаты. По мнению Р. Фишера, каждое последующее поколение склонно замечать в первоначальной статье Менделя только то, что ожидает в ней найти, игнорируя всё остальное. Современники Менделя видели в этой статье лишь повторение хорошо к тому времени известных экспериментов по гибридизации. Следующее поколение поняло важность его находок, относящихся к механизму наследственности, но не смогло полностью оценить их, поскольку эти находки, казалось, противоречили особенно горячо обсуждавшейся в то время теории эволюции. Позвольте, кстати, добавить, что знаменитый статистик Фишер перепроверил результаты Менделя и заявил, что при обработке современными статистическими методами выводы отца генетики демонстрируют явное смещение в пользу ожидавшихся результатов».

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому монаху, ботанику-любителю Иоганну Грегору Менделю (1822-1884). В его работах, выполнявшихся с 1856 по 1863 гг. были раскрыты основы законов наследственности. В 1865 г. он отсылает в общество естествоиспытателей статью под названием «Опыты над растительными гибридами».

Г.Мендель впервые четко сформулировал понятие дискретного наследственного задатка («ген» - 1903 г., Иогансен). Фундаментальный закон Менделя – закон чистоты гамет.

1902 г. – У.Бэтсон формулирует положение о том, что одинаковые задатки – гомозиготные, разные – гетерозиготные.

Но! Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, опередили развитие науки более чем на четверть века.

О материальных носителях наследственности, механизмах хранения и передачи генетической информации и внутреннем содержании процесса оплодотворения тогда почти ничего еще не было известно. Даже умозрительные гипотезы о природе наследственности (Ч.Дарвин и др.) были сформулированы позже.

Этим объясняется то, что работа Г.Менделя не получила в свое время никакого признания и осталась неизвестной вплоть до переоткрытия законов Менделя.

В 1900 г. – независимо друг от друга три ботаника –

К. Корренс (Германия) (кукуруза)

Г.де Фриз (Голландия) (мак, дурман)

Э.Чермак (Австрия) (горох)

Обнаружили в своих опытах открытые ранее Менделем закономерности, и, натолкнувшись на его работу, вновь опубликовали ее в 1901 г.

Был установлен (1902 г.) факт, что именно хромосомы несут наследственную информацию (В. Сэттон, Т.Бовери). Это положило начало новому направлению генетики – хромосомной теории наследственности. В 1906 г. У.Бэтсон вводит понятия «генетика», «генотип», «фенотип».

Обоснование хромосомной теории наследственности

В 1901 г. Томас Гент (Хант) Морган (1866-1945) впервые стал проводить опыты на животных моделях – объектом его исследований стала плодовая мушка – Drosophila melanogaster . Особенности мушки:

    Неприхотливость (разведение на питательных средах при температуре 21-25С)

    Плодовитость (за 1 год – 30 поколений; одна самка – 1000 особей; цикл развития – 12 суток: через 20 ч-яйцо, 4 дня – личинка, еще 4 дня – куколка);

    Половой диморфизм: самки крупнее, брюшко заостренное; самцы мельче, брюшко округлое, последний сегмент – черный)

    Большой спектр признаков

    Маленькие размеры (ок.3 мм.)

1910 Г. – т. Морган - Хромосомная теория наследственности:

    Наследственность обладает дискретной природой. Ген – единица наследственности и жизни.

    Хромосомы сохраняют структурную и генетическую индивидуальность в течение всего онтогенеза.

    В R! Гомологичные хромосомы попарно конъюгируют, а затем расходятся, попадая в разные зародышевые клетки.

    В возникших из зиготы соматических клетках набор хромосом состоит из 2-х гомологичных групп (жен., муж.).

    Каждая хромосома играет специфическую роль. Гены расположены линейно и образуют одну группу сцепления.

1911 г. – закон сцепленного наследования признаков (генов) (гены, локализованные в одной хромосоме, наследуются сцеплено).

Таким образом, в развитии генетики выделяется два важных этапа:

1 – открытия Менделя, базирующиеся на гибридологических исследованиях – установление количественных закономерностей в расщеплении признаков при скрещивании.

2 – доказательство того, что носителями наследственных факторов являются хромосомы. Морган сформулировал и экспериментально доказал положение о сцеплении генов в хромосомах.

Биография

Грегор Иоганн Мендель (Gregor Johann Mendel) – выдающийся чешский естествоиспытатель. Он родился в Австрийской империи в простой крестьянской семье. При крещении он получил имя Иоганн.

Изучением природы мальчик увлекался с детства, когда еще работал, сперва помощником садовника, а затем – садовником. Проучившись некоторое время в институте Ольмюца, в философских классах, он в $1843$ году постригся в монахи и принял имя Грегор. Дальше с $1844$ по $1848$ год Грегор Мендель учился в Брюннском богословском институте и стал священником. Во время учебы он самостоятельно изучал многие науки, изучал в Венском университете естественную историю.

Именно в Вене Грегор Мендель увлекся исследованиями процессов гибридизации и статистическими соотношениями гибридов. Мендель уделял особое внимание вопросам изменений качественных признаков у растений. Объектом экспериментов он выбрал горох, который можно было вырастить в монастырском саду. Именно наблюдения за результатами этих исследований и легли в основу знаменитых «законов Менделя».

Воодушевленный первыми успехами, Мендель перенес свои эксперименты на растение семейства астровых (скрещивал разновидности ястребинки) и проводил скрещивания разновидностей пчел. Результаты экспериментов не совпали с результатами опытов с горохом. Тогда еще не знали, что механизм наследования признаков у этих растений и животных отличается от механизма наследования у гороха.

Замечание 1

Грегор Мендель был разочарован в биологической науке. После его назначения настоятелем монастыря, он больше не занимался наукой. Но его заслугой является то, что он впервые выявил и описал статистические закономерности наследования признаков у гибридов. Ознакомимся с ними детальнее.

Первый закон Менделя

Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

При скрещивании разных сортов гороха - с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения , который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

«При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

Данный закон еще называют законом доминирования признаков . Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

Второй закон Менделя

Проводя дальнейшие эксперименты с гибридами первого поколения, Мендель обнаружил, что при дальнейшем скрещивании гибридов первого поколения между собой гибриды второго поколений отличаются расщеплением признаков с устойчивым постоянством. Сегодня этот закон формулируют таким образом:

Определение 1

«После скрещивания двух гетерозиготных потомков первого поколения между собой, наблюдается расщепление во втором поколении в определенном числовом соотношении: по фенотипу $3:1$, по генотипу $1:2:1$».

Он получил название закона расщепления . Он означает, что рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и потом проявляется во втором гибридном поколении.

Третий закон Менделя

В первых опытах Грегор Мендель принимал во внимание всего одну пару альтернативных признаков. Он заинтересовался вопросом, что если взять во внимание несколько признаков. Признаки начали комбинироваться между собой и поначалу вызвали у ученого замешательство. Но при более детальном рассмотрении, Менделю удалось вывести закономерность расщепления. Оказалось, что гибриды первого поколения однообразны, а во втором поколении признаки по фенотипу расщепляются в пропорции $9:3:3:1$, независимо от другого признака. Этот закон был назван законом независимого наследования . Сегодня его формулировка выглядит так:

Определение 2

«При скрещивании двух особей, которые отличаются друг от друга по нескольким парам (двум или более) альтернативных признаков, гены и соответствующие им признаки наследуются друг от друга независимо и могут комбинироваться во всех возможных сочетаниях (подобно как при моногибридном скрещивании)».

Закономерности, открытые Менделем предвосхитили начало новой науки – генетики.

Похожие публикации