Что образуется в результате дробления зиготы. Характеристика и значение основных этапов эмбрионального развития: предзиготный период, оплодотворение, зигота, дробление. Их регуляторные механизмы на генном и клеточном уровнях. 64) Механизмы гаструляции

Понятие «зарождение новой жизни», как правило, ограничивается исключительно ассоциациями о зачатии ребенка как о результате страстной встречи яйцеклетки и сперматозоида. Далее же, по мнению большинства, наступает беременность, плод развивается и у будущей мамочки вырастает большой живот. Чего уж тут мудрить, все банально просто… На самом же деле пренатальное развитие человека – очень важный и тонкий процесс, требующий глубокого изучения. Попробуем разобраться в тонкостях одного из его этапов – дробления зиготы.

Зигота – это оплодотворенная сперматозоидом яйцеклетка. Именно с оплодотворения, которое может происходить в течение 3-х дней после полового акта, начинается внутриутробное развитие человека. В результате проникновения сперматозоида в яйцеклетку происходит слияние их ядер с хромосомными наборами из 23 отцовских и 23 материнских хромосом и образуется ядро с присущим всем клеткам организма, за исключением половых, полным набором из 46 хромосом. После этого происходит дробление зиготы.

Дробление зиготы человека – 3-4-дневный процесс деления эмбриона на мелкие части-клетки путем воспроизведения их структуры аналогично структуре материнской клетки (митоза или деления по типу клонирования) с сохранением ее общего размера (около 130 мкм). Бластомеры – клетки, образовавшиеся при дроблении зиготы, также делятся, причем разными темпами, иными словами их деление не синхронно.

В результате первого деления зиготы выходит два дифференцированных бластомера. Один, более крупный, «темный», является основой для развития тканей и органов эмбриона. Совокупность полученных при последующих делениях крупных бластомеров называется эмбриобластом. Второй, мелкий и «светлый» вид бластомера, деление которого происходит быстрее, образует совокупность себе подобных – трофобласт. С его помощью возникают пальцевидные ворсинки, необходимые для последующего крепления зиготы к полости матки. Бластомеры, не взаимодействуя друг с другом, удерживаются с помощью лишь блестящей оболочки яйцеклетки. Ее разрыв может привести к развитию генетически идентичных эмбрионов, например, однояйцевых близнецов.

Появление многоклеточного зародыша

В результате дробления зиготы образуется многоклеточный зародыш, состоящий из клеточных слоев эмбриобласта (внутри) и трофобласта (по периферии). Это стадия морула – период эмбрионального развития, при котором в зародыше насчитывается до сотни клеток, дробление и образование которых осуществляется по мере передвижения эмбриона по яйцеводу в полость матки. В виду отсутствия самостоятельной подвижности, перемещение дробящейся яйцеклетки происходит под влиянием гормонов прогестерона и эстрогена за счет перестальтики мускулатуры яйцевода, движения ресничек его эпителия, а также при перемещении секрета желез в маточной трубе. Где-то на 6-е сутки после оплодотворения попадание морулы в матку приводит к началу процесса бластуляции – образования бластоцисты, представляющей собой полый пузырек, наполненный жидкостью, из хорошо развитых слоев трофобласта и эмбриобласта.

Приблизительно на 9-10 день происходит врастание (имплантация) эмбриона в стенку матки, который уже находится в полном окружении ее клеток. С этого момента у женщины прекращается менструальный цикл, и можно определить наступление беременности.

Образуется зигота, способная к дальнейшему развитию. Деление зиготы называют дроблением. Дробление – это многократное деление зиготы после оплодотворения, в результате которого образуется многоклеточный зародыш.

Зигота делится очень быстро, клетки уменьшаются в размерах и не успевают расти. Поэтому зародыш не увеличивается в объеме. Клетки, образующиеся в результате , называются бластомерами, а перетяжки, отделяющие их друг от друга, называются бороздами дробления.

По направлению различают следующие борозды дробления: меридиональные – это борозды, которые делят зиготу от анимального к вегетативному полюсу; экваториальная борозда разделяет зиготу по экватору; широтные борозды проходят параллельно экваториальной борозде; тангенциальные борозды проходят параллельно поверхности зиготы.

Экваториальная борозда всегда одна, а меридиональных, широтных и тангенциальных может быть много. Направление борозд дробления всегда определяется положением веретена деления.
Дробление всегда проходит по определенным правилам:

Первое правило отражает местоположение веретена дробления в бластомере, а именно:
– веретено дробления располагается в сторону наибольшей протяженности цитоплазмы, свободной от включений.

Второе правило отражает направление борозд дробления:
– борозды дробления проходят всегда перпендикулярно веретену деления.

Третье правило отражает скорость прохождения борозд дробления:
– скорость прохождения борозд дробления обратно пропорционально количеству желтка в яйцеклетке, т.е. в той части клетки, где желтка мало, борозды будут проходить с большей скоростью, а в той части, где желтка больше, скорость прохождения борозд дробления замедляется.

Дробление зависит от количества и местоположения желтка в яйцеклетке. При небольшом содержании желтка дробится вся зигота, при значительном количестве дробится только часть зиготы, свободная от желтка. В связи с этим яйцеклетки разделяют на голобластические (дробящиеся полностью) и меробластические (с частичным дроблением). Следовательно, дробление зависит от количества желтка и с учетом ряда признаков подразделяется: по полноте охвата процессом материала зиготы на полное и неполное; по отношению размеров образующихся бластомеров на равномерное и неравномерное и по согласованности делений бластомеров – синхронное и асинхронное.

Полное дробление может быть равномерным и неравномерным. Полное равномерное характерно для яйцеклеток с небольшим количеством желтка и его более или менее равномерным расположением в . Таким типом дробится яйцеклетка . В этом случае первая борозда проходит от анимального к вегетативному полюсу, образуется два бластомера; вторая борозда тоже меридиональная, но проходит перпендикулярно первой, образуются четыре бластомера. Третья – экваториальная, образуются восемь бластомеров. После этого идет чередование меридиональных и широтных борозд дробления. Количество бластомеров после каждого деления увеличивается кратно двум (2; 4; 16; 32 и т.д.). В результате такого дробления образуется шарообразный зародыш, который называется бластулой . Клетки, которые образуют стенку бластулы, называют бластодермой, а полость внутри бластоцелью. Анимальная часть бластулы называется – крышей, а вегетативная часть – дном бластулы.


Полное неравномерное дробление характерно для яйцеклеток со средним содержанием желтка, расположенным в вегетативной части. Такие яйцеклетки характерны для круглоротых и . При этом типе дробления образуются бластомеры неодинаковых размеров. В анимальном полюсе образуются мелкие бластомеры, которые называются микромерами, а в вегетативном – крупные – макромеры. Первые две борозды, как и у ланцетника, проходят меридионально; третья борозда соответствует экваториальной борозде, но сдвинута от экватора к анимальному полюсу. Поскольку в анимальном полюсе находится свободная от желтка цитоплазма, то здесь дробление происходит быстрее и образуются мелкие бластомеры. В вегетативном полюсе содержится основная масса желтка, поэтому борозды дробления проходят медленнее и образуются крупные бластомеры.

Неполное дробление характерно для телолецитальных и центролецитальных яйцеклеток. В дроблении принимает участие только часть яйца, свободная от желтка. Неполное дробление делится на дискоидальное (костистые , пресмыкающиеся, птицы) и поверхностное (членистоногие).

Неполным дискоидальным дроблением делятся телолецитальные яйцеклетки, у которых большое количество желтка сконцентрировано в вегетативной части. У этих яйцеклеток безжелтковая часть цитоплазмы в виде зародышевого диска распластана на желтке в анимальном полюсе. Дробление происходит только в области зародышевого диска. Вегетативная часть яйцеклетки, заполненная желтком, участия в дроблении не принимает. Толщина зародышевого диска незначительна, поэтому веретена дробления при первых четырех делениях располагаются горизонтально, а борозды дробления проходят вертикально. Образуется один ряд клеток. После нескольких делений клетки становятся высокими и веретена дробления располагаются в них в вертикальном направлении, а борозды дробления проходят параллельно поверхности яйца. В результате зародышевый диск превращается в пластинку, состоящую из нескольких рядов клеток. Между зародышевым диском и желтком возникает небольшая полость в виде щели, которая аналогична бластоцели.

Неполное поверхностное дробление наблюдается в центролецитальных яйцеклетках с большим количеством желтка в его середине. Цитоплазма в таких яйцеклетках располагается по периферии и незначительная ее часть в центре около ядра. Вся остальная часть клетки заполнена желтком. Через массу желтка проходят тонкие цитоплазматические тяжи, соединяющие периферическую цитоплазму с околоядерной. Дробление начинается с деления ядер, в результате количество ядер увеличивается. Они окружаются тонким ободком цитоплазмы, передвигаются к периферии и располагаются в свободной от желтка цитоплазме. Как только ядра попадают в поверхностный слой, он делится соответственно их количеству на бластомеры. В результате такого дробления вся центральная часть цитоплазмы перемещается к поверхности и сливается с периферической. Снаружи образуется сплошная бластодерма, из которой развивается зародыш, а внутри находится желток. Поверхностное дробление свойственно яйцеклеткам членистоногих.

На характер дробления оказывают влияние и свойства цитоплазмы, которые определяют взаимное расположение бластомеров. По этому признаку выделяют радиальное, спиральное и билатеральное дробление. При радиальном дроблении каждый верхний бластомер располагается точно под нижним (кишечнополостные, иглокожие, ланцетник и др.). При спиральном дроблении каждый верхний бластомер смещен относительно нижнего наполовину, т.е. каждый верхний бластомер располагается между двумя нижними. В этом случае бластомеры располагаются как бы по спирали (черви, моллюски). При билатеральном дроблении через зиготу можно провести только одну плоскость, по обеим сторонам которой будут наблюдаться одинаковые бластомеры (круглые черви, асцидии).

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ

Сущность стадии дробления. Дробление - это ряд последовательных митотических делœений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша - бластулы. Первое делœение дробления начинается после объединœения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте- росток, зачаток). Особенностью митотических делœений дробления является то, что с каждым делœением клетки становятся всœе мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объёмов ядра и цитоплазмы. У морского ежа, к примеру, для этого требуется шесть делœений и зародыш состоит из 64 клеток. Между очередными делœениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и делœения следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость - бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы - бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределœения желтка в яйце. По правилам Сакса - Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного делœения - в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всœех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого делœения соответствует плоскости двусторонней симметрии. Плоскость второго делœения проходит перпендикулярно плоскости первого. Обе борозды первых двух делœений меридианные, ᴛ.ᴇ. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделœенной на четыре более или менее равных по размеру бластомера. Плоскость третьего делœения проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера - микромеры, на вегетативном - четыре более крупных - макромеры. Затем делœение опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, ᴛ.ᴇ. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, в связи с этим такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость делœения бластомеров. В случае если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределœением желтка и степенью синхронности делœения анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего делœения, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением делœения с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.

Рис. 7.2. Дробление у хордовых животных с разным типом яйцеклетки.

А - ланцетник; Б - лягушка; В - птица; Г - млекопитающее:

I -два бластомера, II- четыре бластомера, III- восœемь бластомеров, IV- морула, V- бластула;

1 -борозды дробления, 2 -бластомеры, 3- бластодерма, 4- бластоиель, 5- эпибласт, 6- гипобласт, 7-эмбриобласт, 8- трофобласт; размеры зародышей на рисунке не отражают истинных соотношений размеров

Рис. 7.2. Продолжение

К концу дробления образуется бластула. Тип бластулы зависит от типа дробления, а значит, от типа яйцеклетки. Некоторые типы дробления и бластул представлены на рис. 7.2 и схеме 7.1. Более подробное описание дробления у млекопитающих и человека см. разд. 7.6.1.

Особенности молекулярно-генетических и биохимических процессов при дроблении. Как было отмечено выше, митотические циклы в периоде дробления сильно укорочены, особенно в самом начале.

К примеру, весь цикл делœения в яйцах морского ежа длится 30-40 мин при продолжительности S-фазы всœего 15 мин. gi- и 02-периоды практически отсутствуют, так как в цитоплазме яйцевой клетки создан необходимый запас всœех веществ, и тем больший, чем она крупнее. Перед каждым делœением происходит синтез ДНК и гистонов.

Скорость продвижения репликационной вилки по ДНК в ходе дробления обычная. Вместе с тем в ДНК бластомеров наблюдается больше точек инициации, чем в соматических клетках. Синтез ДНК идет во всœех репликонах одновременно, синхронно. По этой причине время репликации ДНК в ядре совпадает с временем удвоения одного, притом укороченного, репликона. Показано, что при удалении из зиготы ядра дробление происходит и зародыш доходит в своем развитии почти до стадии бластулы. Дальнейшее развитие прекращается.

В начале дробления другие виды ядерной активности, к примеру транскрипция, практически отсутствуют. В разных типах яиц транскрипция генов и синтез РНК начинаются на разных стадиях. В тех случаях, когда в цитоплазме много различных веществ, как, к примеру, у земноводных, транскрипция активируется не сразу. Синтез РНК у них начинается на стадии ранней бластулы. Напротив, у млекопитающих синтез РНК уже начинается на стадии двух бластомеров.

В периоде дробления образуются РНК и белки, аналогичные синтезируемым в процессе овогенеза. В основном это гистоны, белки клеточных мембран и ферменты, необходимые для делœения клеток. Названные белки используются сразу же наравне с белками, запасенными ранее в цитоплазме яйцеклеток. Наряду с этим в период дробления возможен синтез белков, которых не было ранее. В пользу этого свидетельствуют данные о наличии региональных различий в синтезе РНК и белков между бластомерами. Иногда эти РНК и белки начинают действовать на более поздних стадиях.

Важную роль в дроблении играет делœение цитоплазмы - цитотомия. Она имеет особое морфогенетическое значение, так как определяет тип дробления. В процессе цитотомии сначала образуется перетяжка с помощью сократимого кольца из микрофиламентов. Сборка этого кольца проходит под непосредственным влиянием полюсов митотического веретена. После цитотомии бластомеры олиголецитальных яиц остаются связанными между собой лишь тоненькими мостиками. Именно в это время их легче всœего разделить. Это происходит потому, что цитотомия ведет к уменьшению зоны контакта между клетками из-за ограниченной площади поверхности мембран

Сразу после цитотомии начинается синтез новых участков клеточной поверхности, зона контакта увеличивается и бластомеры начинают плотно соприкасаться. Борозды дробления проходят по границам между отдельными участками овоплазмы, отражающим явление овоплазматической сегрегации. По этой причине цитоплазма разных бластомеров различается по химическому составу.

Дробление - понятие и виды. Классификация и особенности категории "Дробление" 2017, 2018.

  • - Политическое дробление империи.

    В конце XII – начале XIII в. на основе общего социального и экономического оживления Германии в политической структуре империи обозначились важные изменения: прежние феодальные области (герцогства, архиепископии) превращались в почти полностью самостоятельные государства.... .


  • - Оплодотворение. Дробление.

    ОПЛОДОТВОРЕНИЕ Лекция 8 Оплодотворение - это вызываемое сперматозоидом побуждение яйца к развитию с одновременной передачей яйцеклетке наследственно го материала отца. В процессе оплодотворения сперматозоид сливается с яйцом, при этом гаплоидное ядро... .


  • - Дробление полезных ископаемых

    ПОДГОТОВИТЕЛЬНЫЕ ПРОЦЕСЫ ЛЕКЦИЯ № 4 Промывка полезных ископаемых Промывка используется при обогащении россыпных месторождений редких и благородных металлов, руд чёрных металлов, фосфоритов, каолинов, стройматериалов (песка, щебня),...


  • Начало новому организму даёт оплодотворённая яйцеклетка (исключение составляют случаи партеногенеза и вегетативного размножения). Оплодотворение представляет собой процесс слияния двух половых клеток (гамет) друг с другом, в ходе которого осуществляются две разные функции: половая (комбинирование генов двух родительских особей) и репродуктивная (возникновение нового организма). Первая из этих функций включает передачу генов от родителей потомкам, вторая - инициацию в цитоплазме яйцеклетки тех реакций и перемещений, которые позволяют продолжить развитие. В результате оплодотворения в яйцеклетке восстанавливается двойной (2п) набор хромосом. Центросома, внесённая спермием, после удвоения образует веретено деления, и зигота вступает в 1-ю стадию эмбриогенеза - стадию дробления. В результате митоза из зиготы образуются 2 дочерние клетки - бластомеры.

    Предзиготный период

    Предзиготный период развития связан с образованием гамет (гаметогенез). Образование яйцеклеток начинается у женщин еще до их рождения и завершается для каждой данной яйцеклетки только после ее оплодотворения. К моменту рождения плод женского пола в яичниках содержит около двух миллионов ооцитов первого порядка (это еще диплоидные клетки), и только 350 - 450 из них достигнут стадии ооцитов второго порядка (гаплоидные клетки), превращаясь в яйцеклетки (по одной в течение одного менструального цикла). В отличие от женщин половые клетки в семенниках (яичках) у мужчин начинают образовываться только с началом периода полового созревания. Длительность периода образования сперматозоида составляет примерно 70 суток; на один грамм веса яичка количество сперматозоидов составляет около 100 миллионов в сутки.


    Оплодотворение

    Оплодотворение - слияние мужской половой клетки (сперматозоида) с женской (яйцом, яйцеклеткой), приводящее к образованию зиготы - нового одноклеточного организма. Биологический смысл оплодотворения состоит в объединении ядерного материала мужской и женской гамет, что приводит к объединению отцовских и материнских генов, восстановлению диплоидного набора хромосом, а также активации яйцеклетки, то есть стимуляции её к зародышевому развитию. Соединение яйцеклетки со сперматозоидом обычно происходит в воронкообразно расширенной части маточной трубы в течение первых 12 часов после овуляции.

    Семенная жидкость, попадая во влагалище женщины при половом сношении, обычно содержит от 60 до 150 млн. сперматозоидов, которые, благодаря движениям со скоростью 2-3 мм в минуту, постоянным волнообразным сокращениям матки и труб и щелочной среде, уже спустя 1-2 минуты после полового акта достигают матки, а через 2-3 часа - концевых отделов маточных труб, где обычно и происходит слияние с яйцеклеткой. Различают моноспермное (в яйцеклетку проникает один сперматозоид) и полиспермное (в яйцеклетку проникают два и более сперматозоидов, но с ядром яйцеклетки сливается только одно ядро сперматозоида) оплодотворение. Сохранению активности спермиев во время прохождения их в половых путях женщины способствует слабощелочная среда шеечного канала матки, заполненного слизистой пробкой. Во время оргазма при половом акте слизистая пробка из шеечного канала частично выталкивается, а затем вновь втягивается в него и тем самым способствует более быстрому попаданию сперматозоидов из влагалища (где в норме у здоровой женщины среда слабокислая) в более благоприятную среду шейки и полости матки. Прохождению сперматозоидов через слизистую пробку шеечного канала способствует и резко повышающаяся в дни овуляции проницаемость слизи. В остальные дни менструального цикла слизистая пробка имеет значительно меньшую проницаемость для сперматозоидов.

    Многие сперматозоиды, находящиеся в половых путях женщины, могут сохранять способность к оплодотворению 48-72 часа (иногда даже до 4-5 суток). Овулировавшая яйцеклетка сохраняет жизнеспособность примерно 24 часа. Учитывая это, наиболее благоприятным временем для оплодотворения считается период разрыва созревшего фолликула с последующим рождением яйцеклетки, а также 2-3-й день после овуляции. Женщинам, применяющим физиологический метод контрацепции, следует помнить о том, что сроки овуляции могут колебаться, а жизнеспособность яйцеклетки и сперматозоидов может быть значительно больше. Вскоре после оплодотворения начинается дробление зиготы и образование зародыша.

    Зигота

    Зигота (греч. zygote соединенная в пару) - диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения (слияния яйцеклетки и сперматозоида). Зигота является тотипотентной (то есть, способной породить любую другую) клеткой. Термин ввёл немецкий ботаник Э. Страсбургер.

    У человека первое митотическое деление зиготы происходит спустя примерно 30 часов после оплодотворения, что обусловлено сложными процессами подготовки к первому акту дробления. Клетки, образовавшиеся в результате дробления зиготы называют бластомерами. Первые деления зиготы называют "дроблениями" потому, что клетка именно дробится: дочерние клетки после каждого деления становятся всё мельче, а между делениями отсутствует стадия клеточного роста.

    Развитие зиготы Зигота либо непосредственно после оплодотворения приступает к развитию, либо одевается плотной оболочкой и на некоторое время превращается в покоящуюся спору (часто называется зигоспорой) - характерно для многих грибов и водорослей.

    Дробление

    Период эмбрионального развития многоклеточного животного начинается с дробления зиготы и завершается рождением новой особи. Процесс дробления заключается в серии последовательных митотических делений зиготы. Образующиеся в результате нового деления зиготы две клетки и все последующие поколения клеток на этом этапе носят название бластомеров. В ходе дробления одно деление следует за другим, и не происходит роста образующихся бластомеров, вследствие чего каждое новое поколение бластомеров представлено более мелкими клетками. Эта особенность клеточных делений при развитии оплодотворенной яйцеклетки и определила появление образного термина - дробление зиготы.

    У разных видов животных яйцеклетки различаются по количеству и характеру распределения в цитоплазме запасных питательных веществ (желтка). Это в значительной степени определяет характер последующего дробления зиготы. При небольшом количестве и равномерном распределении желтка в цитоплазме происходит деление всей массы зиготы с образованием одинаковых бластомеров - полное равномерное дробление (например, у млекопитающих). При скоплении желтка преимущественно у одного из полюсов зиготы происходит неравномерное дробление - образуются бластомеры, различающиеся по размерам: более крупные макромеры и микромеры (например, у амфибий). Если же яйцеклетка очень богата желтком, то дробится ее часть, свободная от желтка. Так, у пресмыкающихся, птиц дроблению подвергается лишь дисковидный участок зиготы у одного из полюсов, где располагается ядро - неполное, дискоидальное дробление. Наконец, у насекомых в процессе дробления задействован лишь поверхностный слой цитоплазмы зиготы - неполное, поверхностное дробление.

    В результате дробления (когда число делящихся бластомеров достигает значительного числа) образуется бластула. В типичном случае (например, у ланцетника) бластула представляет собой полый шар, стенка которого образована одним слоем клеток (бластодерма). Полость бластулы - бластоцелъ, иначе называемая первичной полостью тела, заполнена жидкостью. У амфибий бластула имеет очень небольшую полость, а у некоторых животных (например, членистоногих) бластоцель может полностью отсутствовать.

    Гаструляция

    На следующем этапе эмбрионального периода происходит процесс формирования гаструлы - гаструляция. У многих животных образование гаструлы происходит путем инвагинации, т.е. выпячивания бластодермы на одном из полюсов бластулы (при интенсивном размножении клеток в этой зоне). В результате образуется двуслойный, чашеобразный зародыш. Наружный слой клеток - эктодерма, а внутренний - энтодерма. Внутренняя полость, возникающая при выпячивании стенки бластулы, первичная кишка, сообщается с внешней средой отверстием - первичным ртом (бластопором). Существуют и другие типы гаструляции. Например, у некоторых кишечнополостных энтодерма гаструлы образуется путем иммиграции, т.е. "выселения" части клеток бластодермы в полость бластулы и последующего их размножения. Первичный рот образуется путем разрыва стенки гаструлы. При неравномерном дроблении (у некоторых червей, моллюсков) гаструла образуется в результате обрастания макромеров микромерами и формирования за счет первых энтодермы. Нередко разные способы гаструляции сочетаются.

    У всех животных (кроме губок и кишечнополостных - двуслойных животных) этап гаструляции завершается образованием еще одного слоя клеток - мезодермы. Этот "клеточный пласт формируется между энто - и эктодермой. Известно два способа закладки мезодермы. У кольчатых червей, например, в области бластопора гаструлы обособляются две крупные клетки (телобласты). Размножаясь, они дают начало двум мезодермальным полоскам, из которых (отчасти за счет расхождения клеток, отчасти в результате разрушения части клеток внутри мезодермальных полосок) образуются целомические мешки - телобластический способ закладки мезодермы. При энтероцельном способе (иглокожие, ланцетник, позвоночные) в результате выпячивания стенки первичной кишки образуются боковые карманы, которые затем отделяются и становятся целомичес-кими мешками. В обоих случаях закладки мезодермы целомические мешки разрастаются и заполняют первичную полость тела. Мезодермальный слой клеток, выстилающий изнутри полость тела, образует перитонеальный эпителий. Полость, заменившая таким образом первичную, называется вторичной полостью тела, или целомом. В случае телобластического способа закладки мезодермы бластопор превращается в ротовое отверстие взрослого животного. Такие организмы называются первичноротыми. У вторичноротых животных (при энтероцельном способе закладки мезодермы) бластопор зарастает или превращается в анальное отверстие, а рот взрослой особи возникает вторично, путем выпячивания эктодермы.

    Образованием трех зародышевых листков (экто-, энто- и мезодермы) завершается этап гаструляции, и с этого момента начинаются процессы гисто - и органогенеза. В результате дифференцировки клеток трех зародышевых листков формируются различные ткани и органы развивающегося организма. Еще в конце прошлого века (во многом благодаря исследованиям И. И. Мечникова и А. О. Ковалевского) было установлено, что у разных видов животных одни и те же зародышевые листки дают одни и те же органы и ткани. Из эктодермы образуются эпидермис со всеми производными структурами и нервная система. За счет энтодермы формируется пищеварительный тракт и связанные с ним органы (печень, поджелудочная железа, легкие и т.п.). Мезодерма образует скелет, сосудистую систему, выделительный аппарат, гонады. Хотя сегодня зародышевые листки и не считаются строго специализированными, тем не менее их гомология у подавляющего большинства видов животных очевидна, что указывает на единство происхождения животного царства.

    На протяжении эмбрионального периода происходит нарастание темпов роста и дифференцировки у развивающихся организмов. Если в процессе дробления роста не происходит и бластула (по своей массе) может существенно уступать зиготе, то, начиная с процесса гаструляции, масса зародыша стремительно увеличивается (вследствие интенсивного размножения клеток). Процессы клеточной дифференцировки начинаются на самом раннем этапе эмбриогенеза - дроблении и лежат в основе первичной тканевой дифференцировки - возникновения трех зародышевых листков (эмбриональных тканей). Дальнейшее развитие зародыша сопровождается все усиливающимся процессом дифференцировки тканей и органов. В результате эмбрионального периода развития формируется организм, способный к самостоятельному (более или менее) существованию во внешней среде. Происходит рождение новой особи либо в результате вылупления из яйца (у яйцекладущих животных), либо выхода из тела матери (у живородящих).

    Гисто - и органогенез

    Гисто - и органогенез зародыша осуществляются в результате размножения, миграции, дифференциации клеток, его составляющих, установление межклеточных контактов и гибели части клеток. 317-й по 20-е сутки продолжается пресомитний период с 20-го дня начинается сомитний период развития. На 20-е сутки эмбриогенеза путем образования туловищный складок (цефалокаудальних и боковых) осуществляется отделения собственно зародыша от внезародышевых органов, а также изменение его плоской формы на цилиндрическую. Одновременно дорсальные участка мезодермы зародыша делятся на отдельные сегменты, расположенные с обеих сторон хорды, - сомиты. На 21-е сутки в организме зародыша есть 2-3 пары сомиты. Сомиты начинают образовываться с III пары, I и II пары появляются несколько позже. Количество сомиты постепенно нарастает: на 23-е сутки развития насчитывается 10 пар сомиты, на 25-ю - 14 пар, на 27-м - 25 пар, в конце пятой недели количество сомиты в эмбрионе достигает 43-44 пар. На основе подсчета числа сомиты можно приблизительно определить сроки развития (сомитний возраст) эмбриона.

    С внешней части каждого сомиты возникает дерматом, с внутренней - склеротом, со средней - миотом. Дерматом становится источником дермы кожи, склеротом - хрящевой и костной тканей, миотом - скелетных мышц спинной части зародыша. Вентральные участки мезодермы - спланхнотом - не сегментируются, а разделяются на висцеральный и париетальной листки, из которых развиваются серозные оболочки внутренних органов, мышечная ткань сердца и кора надпочечников. Из мезенхимы спланхнотома образуются кровеносные сосуды, клетки крови, соединительная и гладкая мышечная ткани зародыша. Участок мезодермы, связывающий сомиты с спланхнотомом, делится на сегментные ножки - нефрогонотом, которые служат источником развития почек и половых желез, а также парамезонефральних протоков. Из последних образуется эпителий матки и яйцевода.

    В процессе дифференциации зародышевой эктодермы образуется нервная трубка, нервные гребни, плакоды, кожная эктодерма и прехордальной пластинки. Процесс формирования нервной трубки называется нейруляции. Он заключается в образовании щелевидной углубления на поверхности эктодермы; утолщенные края этого углубления (нервные валики) срастаются с образованием нервной трубки. С краниальной части нервной трубки формируются мозговые пузыри является зачатком головного мозга. С обеих сторон от нервной трубки (между последней и кожной эктодермой) отделяются группы клеток, из которых формируются нервные гребни. Клетки нервного гребня способны к миграции. Клетки, мигрирующие в направлении дерматома, дают начало пигментным клеткам - меланоцитам; клетки нервных гребней, которые мигрируют в направлении брюшной полости, дают начало симпатической и парасимпатической нервной узлам, мозговом веществе надпочечников. Из клеток нервных гребней, не мигрировали, образуются ганглиозные пластинки, из которых развиваются спинномозговые и периферийные вегетативные нервные ганглии. С плакод формируются ганглии головы и нервные клетки органа слуха и равновесия.

    

    1. неполное, асинхронное, неравномерное

    2. полное, синхронное, равномерное

    3. полное, асинхронное, неравномерное

    4. неполное, синхронное, равномерное

    5. полное, асинхронное, равномерное

    Итогом дробления зиготы человека является стадия...

    1. гаструлы 3. Нейрулы 5. бластоцисты

    2. морулы 4. зиготы

    Морула человека представляет собой...

    1. скопление 8-16 бластомеров, связанных адгезивными контактами

    2. яйцеклетку после оплодотворения

    3. однослойный зародыш, имеющий бластоцель

    4. двухслойный зародыш, имеющий экто- и энтодерму

    5. зародыш на стадии двух бластомеров

    Бластула человека называется...

    1. нейрулой 3. дискобластулой 5. амфибластулой

    2. трофобластом 4. бластоцистой

    В бластуле человека выделяют...

    1. эмбриобласт, трофобласт, нейроцель 4. эпибласт, трофобласт, бластоцель

    2. эмбриобласт, трофобласт, бластоцель 5. эпибласт, гипобласт, гастроцель

    3. эмбриобласт, трофобласт, гастроцель

    *60) Полость бластоцисты называется...

    1. гастроцелем 3. Бластоцелем 5. хорионом

    2. невроцелем 4. амнионом

    Эмбрион из маточной трубы попадает в полость матки...

    1. на стадии ранней морулы 4. на стадии поздней бластоцисты

    2. на стадии зиготы 5. на стадии поздней морулы или

    3. после второго деления дробления ранней бластоцисты

    Имплантация эмбриона человека в стенку матки осуществляется на...

    3. 6-7-й день развития

    Имплантация эмбриона человека завершается...

    1. полным погружением эмбриона в эндометрий

    2. прикреплением эмбриона к покровному эпителию

    3. частичным погружением эмбриона в эндометрий

    4. погружением эмбриона в эндометрий и миометрий

    5. попаданием эмбриона из маточной трубы в полость матки

    *64) Механизмы гаструляции...

    1. инвагинация, иммиграция, имплантация, эпиболия

    2. инвагинация, иммиграция, имплантация, деламинация

    3. иммиграция, имплантация, деламинация, эпиболия

    4. инвагинация, иммиграция, деламинация, эпиболия

    5. инвагинация, эпиболия, имплантация, деламинация

    Первая фаза гаструляции у эмбриона человека в норме протекает в...

    1. матке после имплантации

    3. матке одновременно с имплантацией

    4. маточной трубе после имплантации

    5. маточной трубе одновременно с имплантацией

    Первая фаза гаструляции у эмбриона человека в норме протекает на...

    1. 14-й день менструального цикла

    2. 6-7-й день менструального цикла

    3. 6-7-й день развития

    4. 15-16-й день развития

    5. 1-2-й день развития

    *67) На первой фазе гаструляции у эмбриона человека преобладает механизм.. .

    1. деламинации 3. Иммиграциии 5. имплантации

    2. эпиболии 4. инвагинации

    Итог первой фазы гаструляции у эмбриона человека это...

    1. двухслойный зародыш, состоящий из эмбриобласта и трофобласта

    2. двухслойный зародыш, состоящий из эпибласта и гипобласта

    3. однослойный зародыш, состоящий из эмбриобласта

    4. однослойный зародыш, состоящий из трофобласта

    5. двухслойный зародыш, состоящий из эпибласта и эмбриобласта

    Вторая фаза гаструляции у эмбриона человека протекает в...

    1. матке до имплантации

    2. маточной трубе до имплантации

    3. маточной трубе после имплантации

    4. маточной трубе одновременно с имплантацией

    5. матке после окончания имплантации

    Вторая фаза гаструляции у эмбриона человека в норме протекает на...

    1. 14-й день менструального цикла 4. 15-16-й день развития

    2. 6-7-й день менструального цикла 5. 1-2-й день развития

    3. 6-7-й день развития

    *71) На второй фазе гаструляции у человека преобладает механизм...

    1. эпиболии 3. Инвагинации 5. иммиграции

    2. деламинации 4. имплантации

    Итог второй фазы гаструляции у эмбриона человека...

    1. образование двухслойного зародыша

    2. образование трехслойного зародыша

    3. образование трехслойного зародыша и осевого комплекса зачатков

    4. образование однослойного зародыша

    5. имплантация зародыша

    Компоненты нейрального зачатка...

    1. нервная трубка, мезодерма, хорда

    2. нервная пластинка, нервные гребни, плакоды

    3. нервная пластинка, плакоды, мезодерма

    4. нервная трубка, нервные гребни, плакоды

    5. нервная трубка, нервные гребни, мезодерма

    При дифференцировке мезодермы образуются следующие зачатки...

    1. эктодерма, энтодерма

    2. сомит, нефрогонотом, спланхнотом

    3. эпибласт, гипобласт

    4. эмбриобласт, трофобласт

    5. сомит, нефрогонотом, нервная пластинка

    Похожие публикации