Устойчивым называется состояние равновесия при котором. Равновесие тел

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1, а, положение 2 ). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1, а, положение 1 ). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1, а, положение 3 ).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О , изображенная на рисунке 1, б), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 1, б; 1 ), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 1, б; 2 ), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 1, б; 3 ), то положение равновесия безразличное.

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 1, в изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2 Если же его отклонить на угол β (положение 3 ), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 85-87.

Наглядной иллюстрацией устойчивого и неустойчивого равновесия служит поведения тяжелого шарика на гладкой поверхности (рис. 1.5). Интуиция и опыт подсказывают, что помещенный на вогнутую поверхность шарик останется на месте, а с выпуклой и седлообразной поверхностей он скатится. Положение шарика на вогнутой поверхности устойчиво, а положение шарика на выпуклой и седлообразной поверхностях неустойчиво. Аналогично два соединенных шарниром прямых стержня при растягивающей силе находятся в устойчивом положении равновесия, а при сжимающей силе - в неустойчивом (рис. 1.6).

Но интуиция может дать верный ответ только в простейших случаях; для более сложных систем одной интуиции оказывается недостаточно. Например, даже для сравнительно простой механической системы, изображенной на рис. 1.7, а, интуиция может лишь подсказать, что положение равновесия шарика на вершине при очень малой жесткости пружины будет неустойчивым, а с увеличением жесткости пружины оно должно стать устойчивым. Для изображенной на рис. 2.3, б системы стержней, соединенных шарнирами, на основе интуиции можно только сказать, что исходное положение равновесия этой системы устойчиво или неустойчиво в зависимости от соотношения между силой, жесткостью пружины и длиной стержней.

Для того чтобы решить устойчиво или неустойчиво равновесие механической системы, необходимо использовать аналитические признаки устойчивости. Наиболее общим подходом к изучению устойчивости положения равновесия в механике является энергетический подход, основанный на исследовании изменения полной потенциальной энергии системы при отклонениях от положения равновесия.

В положении равновесия полная потенциальная энергия консервативной механической системы имеет стационарное значение, причем, согласно теореме Лагранжа, положение равновесия устойчиво, если это значение соответствует минимуму полной потенциальной энергии. Не углубляясь в математические тонкости, поясним эти общие положения на простейших примерах.

В системах, изображенных на рис. 1.5, полная потенциальная энергия изменяется пропорционально вертикальному смещению шарика. Когда шарик опускается, его потенциальная энергия, естественно, уменьшается. Если шарик поднимается, то потенциальная энергия возрастает. Поэтому нижняя точка вогнутой поверхности соответствует минимуму полной потенциальной энергии и положение равновесия шарика в этой точке устойчиво. Вершина выпуклой поверхности соответствует стационарному, но не минимальному значению полной потенциальной энергии (в данном случае - максимальному значению). Поэтому положение равновесия шарика здесь неустойчиво. Стационарная точка на седлообразной поверхности тоже не соответствует минимуму полной потенциальной энергии (это так называемая точка мини-макса) и положение равновесия шарика здесь неустойчиво. Последний случай весьма характерен. В неустойчивом состоянии равновесия потенциальная энергия вовсе не должна достигать максимального значения. Положение равновесия не будет устойчивым во всех случаях, когда полная потенциальная энергия имеет стационарное, но не минимальное значение.

Для изображенной на рис. 1.6 стержневой системы также нетрудно установить, что при растягивающей силе вертикальное неотклоненное положение стержней соответствует минимуму потенциальной энергии и поэтому является устойчивым. При сжимающей силе неотклоненное положение стержней соответствует максимуму потенциальной энергии и является неустойчивым.

Предоставив возможность читателю самому установить условия устойчивости систем, изображенных на рис. 1.7, вернемся к двум рассмотренным в предыдущем параграфе задачам.

Полная потенциальная энергия упругой системы (с точностью до постоянного слагаемого, которое опускаем) складывается из внутренней энергии деформации U и потенциала внешних сил :

Составим выражение для полной потенциальной энергии стержня с упругим шарниром, нагруженного вертикальной силой (см. рис. 1.1). Энергия деформации упругого шарнира . Потенциал внешних сил с точностью до постоянного слагаемого равен взятому с обратным знаком произведению силы на вертикальное перемещение точки ее приложения, т. е. . Следовательно, полная потенциальная энергия

Рассматриваемая система имеет одну степень свободы: ее деформированное состояние полностью описывается одним независимым параметром. В качестве такого параметра взят угол , поэтому для исследования устойчивости системы нужно найти производные полной потенциальной энергии по углу .

Дифференцируя выражение (1.6) по , получим

Приравнивая нулю первую производную полной потенциальной энергии, приходим к уравнению (1.1), которое раньше было получено непосредственно из условий равновесия стержня. Исследование знака второй производной позволяет установить, какие из найденных положений равновесия устойчивы.

Исследуем устойчивость положений равновесия стержня, соответствующих двум независимым решениям (1.2). Первое из них соответствует вертикальному неотклоненному положению стержня при .

Согласно выражению (1.8) для этого положения равновесия

При полная потенциальная энергия минимальна и вертикальное положение стержня устойчиво, при полная потенциальная энергия максимальна и вертикальное положение стержня неустойчиво.

Для исследования устойчивости стержня в отклоненном положении подставим второе из решений (1.2) в выражение (1.8):

Если , то вторая производная полной энергии положительна, поскольку тогда , и отклоненное положение стержня, которое возможно при , всегда устойчиво.

Осталось еще не выясненным, устойчиво или неустойчиво положение равновесия, соответствующее точке пересечения двух решений при , поскольку в этой точке Вторая производная полной энергии равна нулю. Как известно из курса математического анализа, в таких случаях для исследования стационарной точки следует использовать высшие производные. Последовательно дифференцируя, находим

В исследуемой точке третья производная равна нулю, а четвертая положительна. Следовательно, в этой точке полная потенциальная энергия минимальна и неотклоненное положение равновесия стержня при устойчиво.

Результаты проведенного исследования устойчивости различных положений равновесия стержня с упругим шарниром представлены на рис. 1.8. Там же показано изменение полной потенциальной энергии системы при . Точки соответствуют минимумам полной потенциальной энергии и устойчивым отклоненным положениям равновесия; точка Максимуму энергии и неустойчивому вертикальному положению равновесия стержня.

Составим выражение полной потенциальной энергии . представленной на рис. 1.2. При отклонении стержня на угол пружина удлиняется на величину , а энергия деформации пружины определяется выражением ., вторая производная полной потенциальной энергии равна

Таким образом, при вторая производная отрицательна и отклоненное положение равновесия стержневой системы неустойчиво.

Положения равновесия, соответствующие точкам пересечения двух решений (1.4), неустойчивы (например, неотклоненное положение стержня при ). В этом нетрудно убедиться, определяя в этих точках знаки высших производных.

На рис. 1.9 показаны результаты проведенного исследования и характерные кривые изменения полной потенциальной энергии при различных уровнях нагружения.

Продемонстрированный на простейших примерах путь исследования устойчивости положений статического равновесия упругих систем используют и в случае более сложных систем.

С усложнением упругой системы растут технические трудности его реализации, но принципиальная основа - условие минимума полной потенциальной энергии - полностью сохраняется.

Следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

${\overrightarrow{F}}={\overrightarrow{F_1}}+{\overrightarrow{F_2}}+...= 0$

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы $F$ на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки.

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил. Оба эти условия не являются достаточными для покоя.

Рисунок 1. Безразличное равновесие. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю

Катящееся по горизонтальной поверхности колесо -- пример безразличного равновесия (рис. 1). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия.

Рисунок 2. Различные виды равновесия шара на опоре. (1) -- безразличное равновесие, (2) -- неустойчивое равновесие, (3) -- устойчивое равновесие

Шар, находящийся в верхней точке сферического выступа, -- пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 2).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси -- состояние равновесия неустойчиво (рис. 3).

Рисунок 3. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C -- центр массы диска; ${\overrightarrow{F}}_т\ $-- сила тяжести; ${\overrightarrow{F}}_{у\ }$-- упругая сила оси; d -- плечо

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается.

Задача 1

Наклонная плоскость наклонена под углом 30o к горизонту (рис. 4). На ней находится тело Р, масса которого m=2 кГ. Трением можно пренебречь. Нить, перекинутая через блок, составляет угол 45o с наклонной плоскостью. При каком весе груза Q тело Р будет в равновесии?

Рисунок 4

Тело находится под действием трех сил: силы тяжести Р, натяжения нити с грузом Q и силы упругости F со стороны плоскости, давящей на него в направлении, перпендикулярном к плоскости. Разложим силу Р на составляющие: $\overrightarrow{Р}={\overrightarrow{Р}}_1+{\overrightarrow{Р}}_2$. Условие ${\overrightarrow{P}}_2=$ Для равновесия, учитывая удвоение усилия подвижным блоком, необходимо, чтобы $\overrightarrow{Q}=-{2\overrightarrow{P}}_1$. Отсюда условие равновесия: $m_Q=2m{sin \widehat{{\overrightarrow{P}}_1{\overrightarrow{P}}_2}\ }$. Подставляя значения получим: $m_Q=2\cdot 2{sin \left(90{}^\circ -30{}^\circ -45{}^\circ \right)\ }=1,035\ кГ$.

При ветре привязной аэростат висит не над той точкой Земли, к которой прикреплен трос (рис. 5). Натяжение троса составляет 200 кГ, угол с вертикалью а=30${}^\circ$. Какова сила давления ветра?

\[{\overrightarrow{F}}_в=-{\overrightarrow{Т}}_1;\ \ \ \ \left|{\overrightarrow{F}}_в\right|=\left|{\overrightarrow{Т}}_1\right|=Тg{sin {\mathbf \alpha }\ }\] \[\left|{\overrightarrow{F}}_в\right|=\ 200\cdot 9.81\cdot {sin 30{}^\circ \ }=981\ Н\]

Cтраница 1


Неустойчивое равновесие характеризуется тем, что система, будучи выведена из равновесия, не возвращается к исходному состоянию, а переходит в другое устойчивое состояние. Системы могут находиться в состоянии неустойчивого равновесия в течение короткого промежутка времени. На практике встречаются полуустойчивые (метастабильные) состояния, устойчивые по отношению к более удаленному состоянию. Метастабильные состояния возможны в тех случаях, когда характеристические функции имеют несколько точек экстремума. По истечении некоторого промежутка времени система, находящаяся в метастабильном состоянии, переходит в устойчивое (стабильное) состояние.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведена из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое устойчивое состояние равновесия.  

Неустойчивое равновесие имеет место тогда, когда какое-то отклонение от равновесных цен создает силы, стремящиеся сдвинуть цены все дальше и дальше от состояния равновесия. В анализе спроса и предложения такое явление может иметь место тогда, когда обе кривые - спроса и предложения - имеют отрицательный наклон и кривая предложения пересекает кривую спроса сверху. Если же она пересекает ее снизу, то устойчивое равновесие все-таки наступает. Состояние равновесия может и вообще не наступать. Используя пример с кривыми спроса и предложения, можно показать, что возможны случаи, при которых кривые не пересекаются, и, следовательно, не существует равновесной цены, так как нет цены, которая устроила бы и покупателей, и продавцов. И последнее - кривые спроса и предложения могут пересечься более одного раза, и тогда могут существовать несколько равновесных цен, причем при каждой из них будет иметь место устойчивое равновесие.  


Неустойчивое равновесие характеризуется тем, что тело, отклоненное от исходного положения, не возвращается к нему и не остается в новом положении. И, наконец, если тело остается в новом положении и не стремится возвратиться в первоначальное, то равновесие называют безразличным.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведена из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое, устойчивое состояние равновесия.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведена из состояния (равновесия, к исходному состоянию не возвращается, а переходит в новое - устойчивое состояние равновесия.  

Неустойчивое равновесие, если тело, будучи выведено из положения равновесия в соседнее ближайшее положение и затем предоставлено самому себе, будет еще больше отклоняться от этого положения.  

Неустойчивое равновесие имеет место, если тело, будучи выведено из положения равновесия в ближайшее положение и затем предоставлено самому себе, будет еще больше отклоняться от этого положения равновесия.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведенной из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое и притом устойчивое состояние равновесия. Неустойчивое равновесие существовать не может и поэтому в термодинамике не рассматривается.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведенной из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое и притом устойчивое состояние равновесия.  

Неустойчивое равновесие практически неосуществимо, поскольку нельзя изолировать систему от бесконечно малых внешних воздействий.  

Неустойчивое равновесие между спросом и снабжением нефтью и перспективы обеспечения плавного перехода путем достижения оптимальной структуры энергетического баланса побуждают мир проявить серьезную заинтересованность в поиске альтернативы нефти с целью стимулировать ее сбережение, а также в принятии законов в области экономии энергии. Наконец, высказываются некоторые соображения относительно того, как сотрудничество может помочь миру избежать возникновения катастрофического дефицита в течение этого переходного периода.  

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1 положение 2). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1 положение 1). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1 положение 3).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О, изображенная на рисунке 2), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 2,1), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 2,2), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 2,3), то положение равновесия безразличное.

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 2 изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2. Если же его отклонить на угол (положение 3), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.

Похожие публикации