Форумы. Сила — вектор. Единицы измерения сил

Мы не знаем, как у вас в школе обстояли дела с физикой и насколько вам нравился этот предмет, но после сегодняшнего поста, ваше отношение к ней определенно изменится. Потому что если заглянуть внутрь всех упражнений, то можно обнаружить любопытную вещь - они все строятся на принципах ньютоновской механики! И именно механика определяет то, насколько эффективным будет то или иное упражнение для конкретной группы мышц.


Начнем с рассмотрения схематичного изображения человека. Красным обозначены основные суставы, потому что все движения происходят именно в них. Как вы знаете, мышцы крепятся к костям (с помощью сухожилий), при этом наш организм так замечательно устроен, что для каждого сустава есть две группы мышц (антагонисты), позволяющие осуществлять вращение в противоположных направлениях.

самой силы на её плечо . Под плечом в данном случае понимается кратчайшее расстояние от линии, вдоль которой проходит сила, до оси вращения.

Рассмотрим это на примере отжиманий от пола со стандартной постановкой рук:

Видно, что сила тяжести, которая воздействует на спортсмена, проходит через три сустава - плечевой, локтевой и лучезапястный. При этом нагрузка уменьшается при прохождении силы через каждый последующий сустав. То есть основная нагрузка идет на плечевой сустав (и, соответственно, грудные мышцы), а трицепс нагрузку недополучает, поскольку нагрузка на сгибание в локтевом суставе минимальна.

Можно ли изменить технику отжиманий таким образом, чтобы увеличить нагрузку на трицепс? Конечно, поскольку теперь мы знаем о том, что нужно создать вращательный момент, направленный на сгибание в локтевом суставе. Тогда трицепс включится в работу, противодействуя такому усилию. Для достижения этого эффекта необходимо сделать так, чтобы у силы тяжести появилось плечо относительно локтевого сустава. Этого можно добиться, например, сместив руки ближе друг к другу.

Казалось бы мы только немного изменили положение рук, но при этом мы смогли значительно увеличить нагрузку на трицепс и сделать упражнение более целевым! И таких моментов огромное количество! Поэтому, если вы хотите, чтобы ваши тренировки были эффективными, вам нужно всегда думать о том, что, как и почему вы делаете, стараясь выжать максимум из каждого повторения в каждом подходе!


http://сайт/uploads/userfiles/5540.jpg Мы не знаем, как у вас в школе обстояли дела с физикой и насколько вам нравился этот предмет, но после сегодняшнего поста, ваше отношение к ней определенно изменится. Потому что если заглянуть внутрь всех упражнений, то можно обнаружить любопытную вещь - они все строятся на принципах ньютоновской механики! И именно механика определяет то, насколько эффективным будет то или иное упражнение для конкретной группы мышц. Начнем с рассмотрения схематичного изображения человека. Красным обозначены основные суставы, потому что все движения происходят именно в них. Как вы знаете, мышцы крепятся к костям (с помощью сухожилий), при этом наш организм так замечательно устроен, что для каждого сустава есть две группы мышц (антагонисты), позволяющие осуществлять вращение в противоположных направлениях..jpg Вращательная нагрузка, которая приводит все в движение, называется моментом силы и равна произведению самой силы на её плечо. Под плечом в данном случае понимается кратчайшее расстояние от линии, вдоль которой проходит сила, до оси вращения..jpg Видно, что сила тяжести, которая воздействует на спортсмена, проходит через три сустава - плечевой, локтевой и лучезапястный. При этом нагрузка уменьшается при прохождении силы через каждый последующий сустав. То есть основная нагрузка идет на плечевой сустав (и, соответственно, грудные мышцы), а трицепс нагрузку недополучает, поскольку нагрузка на сгибание в локтевом суставе минимальна. Можно ли изменить технику отжиманий таким образом, чтобы увеличить нагрузку на трицепс? Конечно, поскольку теперь мы знаем о том, что нужно создать вращательный момент, направленный на сгибание в локтевом суставе. Тогда трицепс включится в работу, противодействуя такому усилию. Для достижения этого эффекта необходимо сделать так, чтобы у силы тяжести появилось плечо относительно локтевого сустава. Этого можно добиться, например, сместив руки ближе друг к другу..jpg Казалось бы мы только немного изменили положение рук, но при этом мы смогли значительно увеличить нагрузку на трицепс и сделать упражнение более целевым! И таких моментов огромное количество! Поэтому, если вы хотите, чтобы ваши тренировки были эффективными, вам нужно всегда думать о том, что, как и почему вы делаете, стараясь выжать максимум из каждого повторения в каждом подходе! 100-дневный воркаут - Содержание

За направление вектора силы принимается направление вектора ускорения тела, на которое действует сила. В Международной системе единиц за единицу силы принимается сила, которая телу массой 1 кг сообщает ускорение 1 м/с 2 . Эта единица называется ньютоном (Н):

1Н = 1 кг м/с.

Второй закон Ньютона. Связь между силой и ускорением тела устанавливается на основании опыта. Если подействовать на одно и то же тело разными силами, то опыт показывает, что ускорение тела пря­мо пропорционально силе: a ~ F при m = const.

Обобщая подобные наблюдения и опыты, И. Ньютон сформулировал один из основных законов механики: сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение :

F = ma (5).

Из этого закона, получившего название второго закона Ньютона, следует, что для определения ускорения тела нужно знать действующую на него силу и массу тела: a = F/m.

Сложение сил . При одновременном действии на одно тело нескольких сил, тело движется с ускорением, являющимся векторной суммой ускорений, которые возникли бы под действием каждой силы в отдельности. Действующие на тело силы, складываются по правилу сложения векторов. Векторная сумма всех действующих на тело сил называется равнодействующей. F= N+F 1
Третий закон Ньютона . Опыт по­казывает, что при любом взаимо­действии двух тел, массы которых равны m 1 и m 2 , отношение модулей их ускорений остается постоянным и равным обратному отношению масс тел: . Отсюда следует равенство: a 1 m 1 = a 2 m 2.

В векторном виде это уравнение следует записать в виде: . Знак «минус» выражает тот опыт­ный факт, что при взаимодействии тел их ускорения всегда имеют проти­воположные направления.

Используя второй закон Ньютона, получаем равенство:

Это выражение, называемое третьим законом Ньютона, показывает, что тела действуют друг на друга с силами, направленными вдоль од­ной прямой. Эти силы равны по моду­лю, противоположны по направле­нию. Однако они не могут уравновешивать друг друга, так как прило­жены к разным телам.



Закон всемирного тяготения. В XVI в. астроном Тихо Браге, в течение многих лет наблюдавший планеты, смог с наибольшей воз­можной в то время точностью опреде­лить их координаты в различные мо­менты времени. Обрабатывая резуль­таты наблюдений Тихо Браге, астро­ном Иоган Кеплер установил формы орбит - траекторий, по которым движутся планеты, и некоторые осо­бенности движения планет по этим орбитам. Оказалось, что планеты движутся по орбитам, близким к круговым, и отношение куба радиуса орбиты лю­бой планеты к квадрату периода ее обращения вокруг Солнца есть вели­чина постоянная, одинаковая для всех планет Солнечной системы: , или (7) Причины таких закономерностей движения планет пытался выяснить и сам Кеплер. Однако строгое научное объяснение планетных движений бы­ло дано лишь И. Ньютоном. Математическая запись закона для сил тяготения, действую­щих между Солнцем и планетами: сила тяготения пропорциональна массе Солнца и массе планеты и об­ратно пропорциональна квадрату расстояния между ними: (8).

Обобщив этот вывод на все тела в природе, Ньютон получил закон всемирного тяготения: все тела (ма­териальные точки), независимо от их свойств, притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:

где коэффициент пропорциональнос­ти G, одинаковый для всех тел в при­роде, получил название гравитацион­ной постоянной G = 6,6720*10 -11 Н*м 2 *кг -2 .

Сила тяжести. Движение тела под действием силы тяжести. Сила тяжести - гравитационная сила, действующая на тело: F=m*g (10), где g- ускорение свободного падения, ускорение, приобретаемое телом под действием гравитационной силы вблизи поверхности небесных тел.

Самый простой случай движения тел под действием силы тяжести - свободное падение с начальной скоростью, равной нулю. В этом случае тело дви­жется прямолинейно с ускорением свободного падения по направлению к центру Земли. Если начальная скорость тела отлична от нуля и вектор начальной скорости направлен не по вертикали, то тело под действием силы тяжести движется с ускорением свободного падения по криволинейной траектории. Форму такой траектории наглядно иллюстрирует струя воды, вытекающая под некоторым углом к горизонту. Скорость, с которой проис­ходит движение тела по круго­вой орбите под действием силы всемирного тяготения, называ­ется первой космической ско­ростью. Определим первую космическую скорость для Зем­ли. Если тело под действием силы тя­жести движется вокруг Земли равномерно по окружности радиусом R, то ускорение свобод­ного падения является его центростремительным ускоре­нием: (11).

Отсюда первая космическая скорость равна: (12 )

Подставив в выражение (12) значения радиуса Земли и ускорения свободного падения у ее поверхности, получим, что первая космическая скорость для Земли v ~ 7,9 * 10 3 м/с = 7,9 км/с. Эта скорость примерно в 8 раз больше скорости пули.

Первая космическая ско­рость для любого небесного тела также определяется выражени­ем (12). Ускорение свободного падения на расстоянии R от центра небесного тела можно найти, воспользовавшись вто­рым законом Ньютона и законом всемирного тяготения:

Вес тела. Весом тела называют силу, с которой тело действует на горизонтальную опору или подвес. Вес тела P, т. е. сила, с кото­рой тело действует на опору, и сила упругости F упр, с которой опора действует на тело, в соответствии с третьим законом Ньютона рав­ны по модулю и противополож­ны по направлению: = - . (14)

Если тело находится в покое на горизонтальной поверхности или равномерно движется и на него действуют только сила тяжести F T и сила упругости F упр со стороны опоры, то из равен­ства нулю векторной суммы этих сил следует равенство: = - . (15 ) Сопоставив выражения получим = , (16 ), т. е. вес P тела на неподвижной или равномерно движущейся горизонтальной опоре равен силe тяжести F T , но приложены эти силы к разным телам.

При ускоренном движении тела и опоры вес P будет отличаться от силы тяжести F T . По второму закону Ньютона, при движении тела массой m под действием силы тяжести F T и силы упругости F упр с ускоре­нием а выполняется равенство: + = . (17). Из уравнений для веса P получаем: (18 ) или (19 ).

Рассмотрим случай движе­ния лифта, когда ускорение а направлено вертикально вниз. Если координатную ось ОУ на­править вертикально вниз, то векторы P, g и a оказываются параллельными оси ОУ, а их проекции - положительны­ми; тогда уравнение (19) при­мет вид . Так как проекции векторов положительны и параллельны координатной оси, их можно за­менить модулями векторов: P = m(g - a). Вес тела, направление уско­рения которого совпадает с направлением ускорения свободного падения, меньше веса покоящегося тела.

Невесомость . Если тело вмес­те с опорой свободно падает, то а = g и из формулы (7) следу­ет, что P= 0. Исчезновение веса при дви­жении опоры с ускорением свободного падения называется не­весомостью. Состояние невесомости на­блюдается в самолете или космическом корабле при движе­нии с ускорением свободного падения независимо от направ­ления и значения модуля ско­рости их движения. За преде­лами земной атмосферы при выключении реактивных дви­гателей на космический ко­рабль действует только сила всемирного тяготения. Под действием этой силы космиче­ский корабль и все тела, нахо­дящиеся в нем, движутся с оди­наковым ускорением; поэтому в корабле наблюдается явление невесомости.

Сила упругости . Вблизи поверхности Земли любое тело действует сила тяжести, однако, большинство тел вокруг нас не падают с ускорением, а находятся в покое. Не­подвижны книга, лежащая на столе, и стол, стоящий на полу. Книга на столе неподвижна - значит, кроме силы тяжести на нее действуют другие силы и равнодействующая всех сил равна нулю. Сила, возникающая в ре­зультате деформации тела и направленная в сторону, противо­положную перемещениям час­тиц тела при деформации, на­зывается силой упругости. Опыты по растяжению и сжатию твердых стержней по­казали, что при малых по срав­нению с размерами тел дефор­мациях модуль силы упругости пропорционален модулю век­тора перемещения свободного конца стержня. Направление вектора силы упругости проти­воположно направлению векто­ра перемещения при деформации. Поэтому для про­екции силы упругости на ось ОХ, направленную по вектору перемещения, выполняется ра­венство: (F упр) x = -kx, (20) где x - удлинение стержня.Связь между проекцией си­лы упругости и удлинением те­ла была установлена экспери­ментально английским ученым Робертом Гуком (1635-1703) и поэтому называется законом Гука: Сила упругости, возникаю­щая при деформации тела, прямо пропорциональна удли­нению тела и направлена в сторону, противоположную направлению перемещений частиц тела при деформации. Коэффициент пропорци­ональности k в законе Гука на­зывается жесткостью тела. Жесткость тела зависит от фор­мы и размеров тела и от матери­ала, из которого оно изготовле­но. Жесткость в СИ выражается в ньютонах на метр (Н/м). Выясним природу сил упру­гости. В состав атомов и моле­кул входят частицы, обладаю­щие электрическими зарядами. Атомы в твердом теле располо­жены таким образом, что силы отталкивания одноименных электрических зарядов и при­тяжения разноименных заря­дов уравновешивают друг дру­га. При изменениях взаимных положений атомов или молекул в твердом теле в результате его деформации электрические си­лы стремятся возвратить атомы в первоначальное положение. Так при деформации возникает сила упругости. Силы взаимодействия элект­рических зарядов называются электромагнитными силами. Так как силы упругости обусловле­ны взаимодействиями электри­ческих зарядов, по своей приро­де они являются электромаг­нитными силами.

Сила трения покоя . Прикре­пим к бруску крючок динамометра и попытаемся привести брусок в движение. Растяжение пружины динамометра показы­вает, что на брусок действует сила упругости, но тем не менее брусок остается неподвижным. Это значит, что при действии на брусок силы упругости в на­правлении, параллельном по­верхности соприкосновения бруска со столом, возникает равная ей по модулю сила про­тивоположного направления. Сила, возникающая на границе соприкосновения тел при отсут­ствии относительного движе­ния тел, называется силой тре­ния покоя. Сила трения покоя F тр равна по модулю внешней силе F, направленной по касательной к поверхности соприкосновения тел, и противоположна ей по нaправлению: = - .

Сила трения скольжения . Прикрепим динамометр к бруску и заставим брусок двигаться равномерно по горизонтальной поверхности стола. Во время равномерного движения бруска динамометр показывает, что на брусок со стороны пружины действует постоянная сила уп­ругости F упр. При равномерном движении бруска равнодейст­вующая всех сил, приложен­ных к нему, равна нулю. Следо­вательно, кроме силы упругос­ти во время равномерного дви­жения на брусок действует сила, равная по модулю силе уп­ругости, но направленная в противоположную сторону. Эта си­та называется силой трения скольжения. Вектор силы трения скольжения F тр всегда направлен противоположно вектору скорости и движения тела относительно соприкасающегося с ним тела. Поэтому действие силы трения скольжения всегда приводит к уменьшению модуля относи­тельной скорости тел.Силы трения возникают благодаря существованию сил взаимодей­ствия между молекулами и атомами соприкасающихся тел.

Коэффициент трения. Опыт показывает, что: 1) максимальное значение силы трения покоя не зависит от пло­щади поверхности соприкосно­вения тел. 2) максимальное значение модуля си­лы трения покоя прямо пропорционально силе нормально­го давления. Взаимодействие тела и опоры вызывает деформацию и тела, и опоры.

Силу упругости N, возникающую в результате деформации опоры и действующую на тело, называют силой реакции опоры. По третьему за­кону Ньютона, сила давления и сила реакции опоры равны по модулю и противоположны по направлению:

Поэтому предыдущий вывод можно сформулировать так: модуль максимальной силы тре­ния покоя пропорционален си­ле реакции опоры: . Греческой буквой μ обозна­чен коэффициент пропорциональности, называемый коэффициентом трения.

Опыт показывает, что мо­дуль силы трения скольжения, как и модуль максимальной силы трения покоя, пропорциона­лен модулю силы реакции опо­ры:

Максимальное значение си­лы трения покоя примерно рав­но силе трения скольжения, приближенно равны также ко­эффициенты трения покоя и скольжения. Силы трения возникают и при качении тела. При одинако­вой нагрузке сила трения каче­ния значительно меньше силы трения скольжения. Поэтому для уменьшения сил трения в технике применяются колеса, шариковые и роликовые под­шипники.

Контрольные вопросы и задания:

1.При каких условиях скорость тела остается неизменной? Сформулируйте закон инерции (первый закон Ньютона)?

2. Что такое инертность? Какая физическая величина является мерой инертности?

3.Какая физическая величина характеризует отсутствие или наличие внешнего воздействия? Дайте определение силы и назовите единицы силы.

4.Сформулируйте второй закон Ньютона.

5.Сформулируйте третий закон Ньютона.

6.В чем отличие гравитационного притяжения от сил упругости и трения?

7.Сформулируйте закон всемирного тяготения.

8.Что такое сила тяжести? Дайте определение ускорения свободного падения.

9.Дайте понятие первой космической скорости, чему она ровна?

10.Поясните в чем разница между весом неподвижного тела и движущегося с ускорением.

11.Когда возникает невесомость? Приведите примеры.

12.Какие силы называют силами упругости? Сформулируйте закон Гука.

13.Какие взаимодействия определяют силу трения? Сформулируйте определение силы трения, перечислите возможные виды трения.

14.Чему равна сила трения покоя? Как находится максимальная сила трения покоя и от чего она зависит?

15.Трактор сила тяги которого на крюке 15 кН, сообщает прицепу ускорение 0,5 м/с 2 . Какое ускорение сообщит такому же прицепу трактор, развивающий тяговое усилие 60 кН.

16.Тело массой 4 кг под действием некоторой силы приобрело ускорение 2 м/с 2 . Какое ускорение приобретает тело массой 10 кг под действием такой же силы?

17.На тело массой 5кг действуют силы F 1 =9н и F 2 =12н, Направленные на север и восток соответственно. Чему равно и куда направлено ускорение тела?

18.Моторная лодка движется с ускорением 2 м/с 2 под действием трех сил: силы тяги двигателя 1000Н, силы ветра 1000Н и силы сопротивления воды 414 Н. Первая сила направлена на юг, Вторая- на запад, а сила сопротивления воды-противоположна направлению движения лодки. В каком напрвлении движется лодка и чему равна её масса?

19.Найти удлинение буксирного троса с жесткостью 100кН/м при буксировке автомобиля массой 2 т с ускорением 0,5 м/с 2 . Трение принебречь.

20.Во сколько раз сила гравитационного притяжения двух шаров массой по 1 кг, находящихся на расстоянии 1м друг от друга, меньше силы их притяжения к Земле?

21.Каково натяжение троса лифта массой 1000кг при его движении с ускорением 1 м/с 2 , направленным вертикально вверх?

22.С каким ускорением будет двигаться тело массой 1,5 кг, если на него будет действовать сила 20Н, направленная под углом 30 0 к горизонту? Коэффициент трения тела о поверхность равен 0,2.

23.Наклонная плоскость, образующая угол 30 0 с плоскостью горизонта, имеет длину 2м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время 2с. Определить коэффициент трения тела о плоскость.

Во-первых, различие между «гравитацией» и «гравитацией», используемой в геофизике. «Гравитация» относится к закону тяготения Ньютона. (Никто не использует общую теорию относительности к моделированию тяготения для небольших, кусковых масс, таких как Земля, Марс или Луна.) «Гравитация» относится к тому, как все кажется падающим с точки зрения наблюдателя, зафиксированного относительно вращающейся Земли. Таким образом, гравитация включает в себя гравитационное ускорение (внутрь, более или менее к центру Земли) и центробежное ускорение (наружу, от оси вращения Земли). Этот вопрос задает вопрос о гравитации, а не о гравитации.

Как я понимаю, вычислить вектор гравитации, не позволяющий вычислить нормаль к элипсоиду, но нам нужно вычислить нормаль к геоиду (по определению геоид - это поверхность, к которой сила тяжести везде перпендикулярна).

Это наоборот. Геоид - расчетная поверхность. До эры спутника одним из ключевых наборов входных данных для расчета геоида были наблюдения за отклонениями локальной гравитации, в частности отклонение вертикали. В каком направлении гравитация указывала на несколько мест, давалась подсказка относительно локального облика геоида.

Наблюдение орбит спутников обеспечивает глобальную меру гравитационного поля Земли. Сателлиты были специально созданы для этой работы, совсем недавно, GRACE и GOCE. Гравитационное поле Земли публикуется в терминах коэффициентов сферической гармоники. Гравитационный вектор для точки в пространстве на поверхности Земли или над ней может быть вычислен непосредственно из этих коэффициентов. Векторное добавление в центробежном ускорении из-за вращения Земли приводит к гравитационному вектору. Положение также дает номинальный вектор силы тяжести, предполагающий эллипсоидальную Землю.

So I have some questions:

  1. How to compute normal to geoid?

Как отмечено выше, геоид не нужен. Современные модели геоида рассчитываются по тем же сферическим гармоническим коэффициентам (плюс вращение Земли), которые использовались для расчета гравитационного ускорения и силы тяжести.

Технический термин - «отклонение вертикали» (с вариациями). Per Hirt et al., Это до 100 секунд дуги, примерно в 10 километрах к югу от вершины Аннапурны II. Это расчетное значение, основанное на различных спутниковых моделях (которые немного грубые) в сочетании с цифровыми картами местности в сочетании с некоторой более волосатой математикой для создания мелкомасштабных моделей.

Сила - вектор. Единицы измерения сил

Материальная точка. Абсолютно твердые и деформируемые тела

Остановимся на основных понятиях статики, которые вошли в науку как результат многовековой практической деятельности человека.

Одно из таких основных понятий - понятие мате­риальной точки. Тело можно рассматривать как мате­риальную точку, т. е. его можно представить геометри­ческой точкой, в которой сосредоточена вся масса тела, в том случае, когда размеры тела не имеют значения в рассматриваемой задаче. Например, при изучении дви­жения планет и спутников их считают материальными точками, так как размеры планет и спутников пренебре­жимо малы по сравнению с размерами орбит. С другой стороны, изучая движение планеты (например, Земли) вокруг оси, ее уже нельзя считать материальной точкой. Тело можно считать материальной точкой во всех слу­чаях, когда при движении все его точки имеют одинаковые траектории.

Системой называется совокупность материальных то­чек, движения и положения которых взаимозависимы. Из этого следует, что любое физическое тело можно рассматривать как систему материальных точек.

При изучении равновесия тела считают абсолютно твердыми, недеформируемыми (или абсолютно жесткими), т. е. предполагают, что никакие внешние воздействия не вызывают изменения их размеров и формы и что расстояние между любыми двумя точками тела всегда остается неизменным. В дей­ствительности все тела под влиянием силовых воздей­ствий со стороны других тел изменяют свои размеры и форму. Так, если стержень, например, из стали или дерева, сжать, его длина уменьшится, а при растяжении она соответственно увеличится (рис. 1, а). Изменяется также форма стержня, лежащего на двух опорах, при действии нагрузки, перпендикулярной его оси (рис. 1, б). Стержень при этом изгибается.

В подавляющем большинстве случаев деформации тел (деталей), из которых состоят машины, аппараты и соору­жения, очень малы, и при изучении движения и равнове­сия этих объектов деформациями можно пренебречь. Таким образом, понятие абсолютно твердого тела является условным (абстракцией). Это понятие вводят с целью упрощения исследования законов равновесия и движения тел. Лишь изучив механику абсолютно твер­дого тела, можно приступить к изучению равновесия и движения деформируемых тел, жидкостей и др. При рас­четах на прочность, рассматриваемых после изучения статики абсолютно твердого тела, необходимо учитывать деформации тел. В этих расчетах деформации играют существенную роль и пренебрегать ими нельзя.

Сила - вектор. Единицы измерения сил

В механике вводится понятие силы, которое чрезвы­чайно широко используется и в других науках. Физиче­ская сущность этого понятия ясна каждому человеку непосредственно из опыта.

Рис.1.Деформация тел под действием силы:

а - деформации сжатия – растяжения;

б - деформация изгиба.

Остановимся на определении силы для абсолютно твердых тел. Эти тела могут вступать во взаимодействие, в результате которого изменяется характер их движения. Сила–это мера взаимодействия тел. Например, взаимодействие планет и Солнца определяется силами тяготения, взаимодействие Земли и различных тел на ее поверхности - силами тяжести и т. д.

Следует подчеркнуть, что при взаимодействии реаль­ных, а не абсолютно твердых тел, возникающие силы могут не только приводить к изменению характера их движения, но и вызы­вать изменение формы или размеров этих тел. Иными словами, в реальных физических телах силы служат причиной возникновения деформаций.

Механика рассматривает и изучает не природу дей­ствующих сил, а производимый ими эффект. Эффект действия силы определяется тремя факторами, полностью её определяющими:

2. Численным значением (модулем);

3. Точкой приложения.

Иными словами, сила является векторной величиной.

Кроме сил, в механике часто встречаются другие векторные величины - в частности, скорость, ускорение.

Величина, не имеющая направления, называется ска­ляром, или скалярной величиной, К скалярным величинам относятся, например, время, температура, объем и др.

Вектор изображается отрезком, на конце которого ставится стрелка. Направление стрелки указывает направ­ление вектора, длина отрезка - величину вектора, отложенную в выбранном масштабе.

«Векторы в пространстве» - Умножение вектора на число. a+b=b+a (переместительный закон). Если векторы сонаправлены и их длины равны, то эти векторы называются равными. Коллинеарные векторы - это векторы, лежащие на одной или на параллельных прямых. Начало вектора. Сонаправленные векторы - это векторы, имеющие одно направление.

«Вектор геометрия» - 1. Введение. Название работы отражает содержание и смысл, который раскрыт более тщательно. 4. Операции над векторами. Вся система координат обозначается Охуz. Точка О разделяет каждую из осей координатё на два луча. 5.Векторы в пространстве. 6. Скалярное произведение векторов. Гамильтону принадлежат и термин «скаляр», «скалярное произведение», «векторное произведение».

«Векторы 9 класс» - Правило параллелограмма. Правило многоугольника. Коллинеарные вектора. Векторы. Равны ли векторы? Правило треугольника. Длина (модуль) вектора. Коллинеарные векторы. Сложение векторов.

«Вектор в геометрии» - Равенство векторов. Разность векторов а и b можно найти по формуле Где - вектор, противоположный вектору. Длина нулевого вектора считается равной нулю: =0. Правило параллелограмма. Очевидно, вектор является противоположным вектору. Свойства сложения векторов. Длина вектора (вектора) обозначается так: .

«Угол между векторами» - Найти угол между прямыми СВ1 и D1B. Как находят координаты середины отрезка? Введение системы координат. Координаты векторов. Чему равен скалярный квадрат вектора? Угол между прямыми АВ и CD. Вычислить косинус угла между прямыми. Свойства скалярного произведения? Направляющий вектор прямой. Найти угол между прямыми ВD и CD1.

«Центр тяжести» - 6) Рассмотрим пластинку на отрезке . Определение центра тяжести математическими средствами Секция математики. 4) Делим на n равных частей точками деления х1

Похожие публикации