Все элементы главной подгруппы 7 группы 7а. Общая характеристика элементов VII группы. Валентные состояния атомов CI, Br, I

3s 3p 3d
1s
2s 2p


Валентность в данном состоянии = VII

Таким образом, для хлора характерны валентности: I, III, V, VII

Аналогичные валентности и степени окисления характерны для Br и I.

Для F, в отличие от остальных галогенов, характерны только степени окисления -1, 0 и валентность I, так как у него самая высокая электроотрицательность среди всех элементов и нет свободных орбиталей на последнем уровне.

Физические свойства простых веществ:

В качестве простых веществ все галогены встречаются в виде молекул Э 2 (F 2 , Cl 2 , Br 2 , I 2). В молекуле атомы соединены ковалентной неполярной химической связью.

Образуют молекулярные кристаллические решетки.

Встречаемость в природе:

F 2 , Cl 2 , Br 2 , I 2 практически не встречаются из-за своей высокой химической активности.

В основном галогены в природе встречаются в составе солей:

NaCl – каменная соль (после очистки – поваренная соль)

KCl ∙ NaCl - сильвинит

KCl ∙ MgCl 2 - карналлит

Cl входит в состав хлорофилла растений.

Получение (на примере хлора):

1. В промышленности – электролизом раствора или расплава NaCl.

а). Расплав: 2NaCl → 2Na + Cl 2

на катоде: Na + +1e → Na 0

на аноде: 2Cl - - 2e → Cl 2 0

б). Раствор: 2NaCl + 2H 2 O → H 2 + Cl 2 + 2NaOH

на катоде: 2H 2 O + 2e → H 2 0 + 2OH -

на аноде: 2Cl - - 2e → Cl 2 0

2. В лаборатории – реакцией соляной кислоты с сильными окислителями:

а). MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

б). 2KMnO 4(крист.) + 16HCl (конц.) = 5Cl 2 + 2MnCl 2 + 2KCl + 8H 2 O

в). KClO 3 + 6HCl (конц.) = 3Cl 2 + KCl + 3H 2 O

бертолетова соль

Химические свойства галогенов (на примере хлора):

Все галогены являются сильными окислителями!

1). Взаимодействие с простыми веществами:

а). С металлами:

2Na + Cl 2 = 2NaCl

2Fe + 3Cl 2 = 2FeCl 3

Cu + Cl 2 = CuCl 2

б). С неметаллами:

H 2 + Cl 2 = 2HCl (реакция идет на свету)

2P + 3Cl 2 = 2PCl 3 (реакция идет при нагревании)

хлорид фосфора (III)

2P + 5Cl 2 = 2PCl 5 (реакция идет при нагревании)

хлорид фосфора (V)

Si + 2Cl 2 = SiCl 4 (реакция идет при нагревании)

хлорид кремния (IV)

С азотом и кислородом хлор и другие галогены не взаимодействуют, так как и те, и другие в реакциях проявляют окислительные свойства, поэтому оксиды галогенов можно получить только косвенным путем.

2). Взаимодействие со сложными веществами:

а). С водой:

В направлении F 2 → Cl 2 → Br 2 → I 2 растворимость в воде падает.

Хлор растворим в воде, но плохо (2,5 объема в 1 объеме воды при 20ºС). Раствор хлора в воде называется «хлорная вода». При этом идет реакция:

Cl 2 + H 2 O = HCl + HClO (реакция диспропорционирования)

HClO → HCl +

атомарный кислород

За счет образования атомарного кислорода растворенный в воде хлор обладает высоким окисляющим, отбеливающим (в том числе обесцвечивает органические красители) и обеззараживающим действием.

Фтор не может иметь положительных степеней окисления, поэтому с водой не диспропорционирует:

2F 2 + 2H 2 O = 4HF + O 2

I 2 плохо растворим в воде и практически не взаимодействует с ней, но хорошо растворим в органических растворителях (спирте, хлороформе), а также KI. Раствор I 2 в KI называется «раствор Люголя».

б). С щелочами диспропорционируют:

на холоду: Cl 2 + 2KOH = KCl + KClO + H 2 O

при нагревании: 3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

в). С растворами солей галогеноводородных кислот (находящихся ниже по группе):

Cl 2 + 2NaBr = 2NaCl + Br 2

Cl 2 + 2NaI = 2NaCl + I 2

Но! F 2 + NaCl ≠ , так как F 2 в первую очередь взаимодействует с водой.

Подобным образом идут реакции с галогеноводородами: Cl 2 + 2HI = I 2 + 2HCl

Качественная реакция на I 2:

I 2 + крахмал = темно синее окрашивание

Образующееся соединение при нагревании разрушается и происходит обесцвечивание реакционной смеси. После охлаждения темно синяя окраска снова возвращается, так как соединение образуется заново.

Галогеноводороды

Получение (на примере HCl):

1. В промышленности – из простых веществ:

H 2 + Cl 2 = 2HCl

2. В лаборатории – из солей:

NaCl (крист.) + H 2 SO 4(конц.) = HCl + NaHSO 4 (аналогично HF)

Но: 2NaBr (тв.) + H 2 SO 4(конц.) = Br 2 + 2NaHSO 4 (аналогично HI, так как HBr и HI сильные восстановители)

Химические свойства (на примере HCl):

Галогеноводороды в обычных условиях мало реакционноспособны, зато их растворы в воде (кислоты) химически очень активны.

Соляная, бромоводородная и йодоводородная кислоты – сильные электролиты, а фтороводородная – слабый электролит.

Соляная кислота HCl – бесцветная жидкость, летучая, максимальная концентрация 35 – 39%, во влажном воздухе дымит.

1. Взаимодействие с металлами, стоящими в ряду напряжений до водорода!:

Fe + HCl = FeCl 2 + H 2

а). 2Na + 2H 2 O = 2NaOH + H 2

б). NaOH + HCl = NaCl + H 2 O

2. Взаимодействие с основными и амфотерными оксидами:

MgO + 2HCl = MgCl 2 + H 2 O

CuO + 2HCl = CuCl 2 + H 2 O (при нагревании)

ZnO + 2HCl = ZnCl 2 + H 2 O

3. Взаимодействие с основаниями и амфотерными гидроксидами:

NaOH + HCl = NaCl + H 2 O

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

4. Взаимодействие с солями (если образуется осадок, газ или слабый электролит):

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

FeS + 2HCl = FeCl 2 + H 2 S

Качественные реакции на хлорид-, бромид- и йодид-ионы:

а). NaCl + AgNO 3 = AgCl↓ + HNO 3

белый творожистый

Осадок растворяется в растворе аммиака:

AgCl + 2NH 4 OH = Cl + 2H 2 O

При добавлении кислоты снова выпадает белый творожистый осадок:

Cl + 2HNO 3 = AgCl↓ + 2NH 4 NO 3

б). NaBr + AgNO 3 = AgBr↓ + HNO 3 (осадок плохо растворим в аммиаке)

бледно-желтый осадок

в). NaI + AgNO 3 = AgI↓ + HNO 3 (осадок не растворим в аммиаке)

светло-желтый осадок

9 F 1s 2 2s 2 2p 5


17 Cl 3s 2 3p 5


35 Br 3d 10 4s 2 4p 5


53 I 4d 10 5s 2 5p 5


85 At 4f 14 5d 10 6s 2 6p 5


5 элементов главной подгруппы VII группы имеют общее групповое название «галогены» (Hal), что означает «солерождающие».


В подгруппу галогенов входят фтор, хлор, бром, иод и астат (астат - радиоактивный элемент, изучен мало). Это р-элементы группы периодической системы Д.И. Менделеева. На внешнем энергетическом уровне их атомы имеют по 7 электронов ns 2 np 5 . Этим объясняется общность их свойств.

Свойства элементов подгруппы галогенов


Они легко присоединяют по одному электрону, проявляя степень окисления -1. Такую степень окисления галогены имеют в соединениях с водородом и металлами.


Однако атомы галогенов, кроме фтора, могут проявлять и положительные степени окисления: +1, +3, +5, +7. Возможные значения степеней окисления объясняются электронным строением, которое у атомов фтора можно представить схемой


Будучи наиболее электроотрицательным элементом, фтор может только принимать один электрон на 2р-подуровень. У него один неспаренный электрон, поэтому фтор бывает только одновалентным, а степень окисления всегда -1.


Электронное строение атома хлора выражается схемой:



У атома хлора один неспаренный электрон на 3р-подуровне и обычном (невозбужденном) состоянии хлор одновалентен. Но поскольку хлор находится в третьем периоде, то у него имеется еще пять орбиталей 3 -подуровня, в которых могут разместиться 10 электронов.


В возбужденном состоянии атома хлора электроны переходят с 3p - и 3s-подуровней на 3d-подуровень (на схеме показано стрелками). Разъединение (распаривание) электронов, находящихся в одной орбитали, увеличивает валентность на две единицы. Очевидно, хлор и его аналоги (кроме фтора) могут проявлять лишь нечетную переменную валентность 1, 3, 5, 7 и соответствующие положительные степени окисления. У фтора нет свободных орбиталей, а значит, при химических реакциях не происходит разъединения спаренных электронов в атоме. Поэтому при рассмотрении свойств галогенов всегда надо учитывать особенности фтора и соединений.


Водные растворы водородных соединений галогенов являются кислотами: НF - фтороводородная (плавиковая), НСl - хлороводородная (соляная), НВr - бромводородная, НI - йодоводородная.

Одинаковое строение внешнего электронного слоя (ns 2 np 5) обусловливает большое сходство элементов.

Простые вещества - неметаллы F 2 (газ), Cl 2 (газ), Вг 2 (ж), l 2 (тв.).


При образовании ковалентных связей галогены чаще всего используют один неспаренный р-электрон, имеющийся в невозбужденном атоме, проявляя при этом В = I.

Валентные состояния атомов CI, Br, I.

Образуя связи с атомами более электроотрицательных элементов, атомы хлора, брома и йода могут переходить из основного валентного состояния в возбужденные, что сопровождается переходом электронов на вакантные орбитали d-подуровня. При этом число неспаренных электронов увеличивается, вследствие чего атомы CI, Br, I могут образовывать большее число ковалентных связей:


Отличие F от других галогенов

В атоме F валентные электроны находятся на 2-м энергетическом уровне, имеющем только s- и р- подуровни. Это исключает возможность перехода атомов F в возбужденные состояния, поэтому фтор во всех соединениях проявляет постоянную В, равную I. Кроме того, фтор - самый электроотрицательный элемент, вследствие чего имеет и постоянную с. о. -1.

Важнейшие соединения галогенов

I. Галогеноводороды HHal.


II Галогениды металлов (соли галогеноводородных кислот) - самые многочисленные и устойчивые соединения галогенов


III. Галогенорганические соединения


IV. Кислородсодержащие вещества:


Неустойчивые оксиды, из которых достоверным можно считать существование 6 оксидов (Cl 2 O, ClO 2 , Cl 2 O 7 , Вr 2 O, ВrO 2 , I 2 O 5);


Неустойчивые оксокислоты, из которых только 3 кислоты выделены как индивидуальные вещества (НСlO 4 , НlO 3 , НlO 4);


Соли оксокислот, главным образом хлориты, хлораты и перхлораты.

Элементы, входящие в VII группу периодической системы, делятся на 2 подгруппы: главную — подгруппу галогенов — и побочную — подгруппу марганца. В эту же группу помещают и водород, хотя его атом имеет на внешнем валентном, уровне единственный электрон и его следовало бы поместить в I группу.

Однако водород имеет очень мало общего как с элементами основой подгруппы — щелочными металлами, так и с элементами побочной подгруппы — медью, серебром и золотом. В то же время он, как и галогены, присоединяя в реакциях с активными металлами электрон, образует гидриды, имеющие некоторое сходство с галогенидами.

К подгруппе галогенов относятся фтор, хлор, бром, иод и астат. Первые 4 элемента встречаются в природе, последний получен искусственно и поэтому изучен значительно меньше остальных галогенов. Слово "галоген" означает солеобразующий. Это название элементы подгруппы получили благодаря легкости, с которой они реагируют со многими металлами, образуя соли.

Все галогены имеют структуру внешней электронной оболочки s 2 p 5 . Поэтому они легко принимают электрон, образуя устойчивую благородногазовую электронную оболочку (s 2 р 6). Наименьший радиус атома в подгруппе — у фтора, у остальных он увеличивается в ряду F < Cl < Br < I < Аt и составляет соответственно 133; 181; 196; 220 и 270 нм. В таком же порядке уменьшается сродство атомов элементов к электрону.

Галогены — очень активные элементы. Они могут отнимать электроны не только у атомов, которые их легко отдают, но и у ионов и даже вытеснять другие галогены, менее активные, из их соединений. Например фтор вытесняет хлор из хлоридов, бром из бромидов, а иод из иодидов.

Из всех галогенов только фтор, находящийся во II периоде, не имеет незаполненного d-уровня. По этой причине он не может иметь больше 1-го неспаренного электрона и проявляет валентность только -1. В атомах других галогенов d-уровень не заполнен, что дает им возможность иметь различное количество неспаренных электронов и проявлять валентность -1, +1, +3, +5 и +7, наблюдающуюся в кислородных соединениях хлора, брома и иода.

К подгруппе марганца принадлежат марганец, технеций и рений. В отличии от галогенов элементы подгруппы марганца имеют на внешнем электронном уровне всего 2 электрона и поэтому не проявляют способности присоединять электроны, образуя отрицательно заряженные ионы.

Марганец распространен в природе и широко используется в промышленности.

Технеций радиоактивен, в природе не встречаемся, а получен искусственно (впервые — Э. Сегре и К. Перрье, 1937 г.) Этот элемент образуется вследствие радиоактивного распада урана. Рений относится к числу рассеянных элементов. Он не образует самостоятельных минералов, а встречается в качестве спутника некоторых минералов, особенно молибденовых.

Он был открыт В. и И. Ноддак в 1925 г. Сплавы, имеющие небольшие добавки рения, обладают повышенной устойчивостью против коррозии. Добавка рения сплавам увеличивает их механическую прочность.

Это свойство рения позволяет применять его вместо благородного металла иридия. Платино-платинорениевые термопары работают лучше платино-платиноиридиевых, но их нельзя использовать при очень высоких температурах, так как образуется летучее соединение Re 2 O 7 .

К VII А группы периодической системы Д.И. Менделеева входят Флуор 9F, Хлор 17Cl, Бром 35Br, иод 53И и Астат 85At (стабильных изотопов не имеет). F, Cl, Br, и носят название “галоґены” (в переводе с греческого – солероды). Это название обусловлено их свойством образовывать соли при непосредственном взаимодействии с металлами.
Электронная конфигурация внешнего слоя – ns2nр5. Изменение химических свойств в ряду F – Cl – Br – I – At обусловлено последовательным увеличением размеров ns-, nр-валентных орбиталей. С увеличением порядкового номера атома элемента возрастает плотность, увеличиваются температуры кипения и плавления, растет сила галогеноводневих кислот, уменьшается реакционная способность.
Галогены – типичные неметаллы, под действием восстановителей легко превращаются в галогенид-ионы Г. Родство атома к электрону уменьшается вниз по группе. Галогены энергично взаимодействуют с металлами, с s-металлами образуют ионные соединения. Ионный характер галогенидов несколько ослабляется с увеличением порядкового номера элемента является следствием уменьшения электроотрицательности. Более электроотрицательными элементами галогены проявляют положительные степени окисления.
Свойства фтора заметно отличаются от свойств других галогенов. У него отсутствуют вакантные d-орбитали, электроны 2s22р5 слабо экранированные от ядра, что приводит к высокой электронной плотности, энергии ионизации, электроотрицательности. Поэтому для фтора возможна только степень окисления -1, 0, а для других галогенов 1 (максимальная устойчивость соединений), 0, +1, +3, +5, +7, вероятны также +2, +4, +6). Энергия связи в молекуле F2 аномально мала, что делает ее очень реакционные (фтор непосредственно реагирует со всеми элементами, кроме НЕ, Nе, Аr, с образованием соединений, в которых элементы находятся в максимально возможных степенях окисления). Также следует отметить высокие по сравнению с другими галогенами, энтальпии образования ионных и ковалентных соединений.
2.2 Нахождение в природе

В земной коре содержание фтора составляет 6 · 10-2%, хлора, брома, йода соответственно 2 · 10-2; 2 · 10-4; 4 * 10-5%. Фтор встречается в виде фторид (около 30 минералов, наиболее важные – СаF2 (флюорит или плавиковый шпат), 3Ca3 (PO4) 2CaF2 (фторапатит), Na3 – криолит). Хлор образует около 70 собственных минералов, главным образом это хлориды легких металлов (каменная соль, галит NaCl; сильвин KCl, карналлит KCl MgCl2 6H2O и т.п.). Основная масса галогенов сконцентрирована в воде морей и океанов. Бром и йод также содержатся в буровых водах, морских водорослях (например, в морской капусте (ламинарии) содержание йода достигает 0,45%).
2.3 Физические свойства

В газообразном, жидком и твердом состоянии галогены – двухатомные молекулы Г2. Фтор – светло-желтый газ с очень неприятным резким запахом. Хлор – зелено-желтый газ с резким запахом, бром – красно-бурая тяжелая жидкость с резким запахом йод – черные, металлически блестящие кристаллы (при нагревании превращается в фиолетовый газ (сублимация) – рисунок 2.1. Температуры плавления и кипения монотонно увеличиваются от фтора к йоду с увеличением размера молекулы и усилением межмолекулярного взаимодействия.

а
бы
в
а – хлор; б – бром; в – йод
Рисунок 2.1 – Внешний вид хлора, брома, йода

2.4 Методы извлечения

Фтор получают электролизом расплавов фторид (преимущественно КНF2, что позволяет проводить электролиз при 1000С, тогда как КF плавится при температуре 8570С.
Промышленное производство хлора основывается на электролизе водных растворов NаСl. В лабораторных условиях его получают взаимодействием концентрированной HCl с окислителями:
MnO2 + 4HCl → MnCl2 + Cl2 + 2H2O
2KMnO4 + 16HCl → 2MnCl2 + 2KCl + 5Cl2 + 8H2O
Особенно чистый хлор получают по реакции:
2AuCl3 → 2Au + 3Cl2
Бром в промышленности получают из морской воды, предварительно избавившись NаСl: 2Br – + Cl2 → Br2 + 2Cl-
Бром выдувают потоком воздуха и поглощают железными стружками или другими веществами, например:
Na2CO3 + Br2 → NaBrO + NaBr + CO2
NaBrO + NaBr + H2SO4 → Br2 + Na2SO4 + H2O
В лабораторных условиях бром получают по реакции:
2KBr + Cl2 → 2KCl + Br2
Йод в промышленности также добывают из морской воды, воды нефтяных скважин, золы морских растений:
2NaI + Cl2 → 2NaCl + I2
В лаборатории йод получают по реакции:
2NaI + MnO2 + 2H2SO4 → I2 + MnSO4 + Na2SO4 + 2H2O
Йод адсорбируют активированным углем или экстрагируют растворителями, очищают – сублимацией.
2.5 Химические свойства элементов VII А группы

По химическим свойствам галогены – активные неметаллы. Благодаря низкой энергии диссоциации молекулы фтора, самой электроотрицательности атома и высокой энергии гидратации иона, фтор – сильнейший окислитель (окисляет другие элементы в высшие положительных степеней окисления), энергично реагирует с простыми веществами за исключением Hе, Е и А r. В ряду от фтора к йоду окислительные свойства уменьшаются, а восстановительные – увеличиваются.

Взаимодействие с водой:
С водой фтор взаимодействует чрезвычайно энергично:
2F2 + 2H2O → 4HF + O2,
Реакция сопровождается образованием озона и ОF2.
При растворении хлора в воде происходит реакция:
H2O + Сl2 HOСl + HСl – при комнатной температуре в насыщенном растворе Сl2 в воде примерно 70% хлора находится в виде молекул, тогда как равновесие для йода почти полностью смещена влево.
Взаимодействие со сложными веществами:
Фтор реагирует со щелочами с образованием ОF2:

При действии хлора на холодные растворы щелочей образуются соли хлорноватистой кислоты:
Сl2 + 2KOH → KOСl + KСl + H2O
калия гипохлорит
При воздействии на горячий раствор щелочи (70-800С) образуются соли хлорноватой кислоты – хлораты:
3Сl2 + 6KOH → KСlО3 + 5KСl + 3H2O
калия хлотрат
Йод и бром также преимущественно образуют при взаимодействии с щелочами триоксогалогенаты.
Хлор реагирует с раствором соды:
2Na2CO3 + Cl2 + H2O → NaClO + NaCl + 2NaHCO3
“Жавелевая вода”
Йод в незначительной степени проявляет свойства, характерные для металлов. Так можно получить йод нитрат, который разлагается при температуре ниже 0 ° С.
I2 + AgNO3 AgI + INO3; 3INO3 → I2 + I (NO3) 3
2.6 Соединения галогенов

Галогеноводородов
При стандартных условиях галогеноводороды – бесцветные газы с резким запахом. С ростом массы и размера молекул усиливается межмолекулярное взаимодействие, и, как следствие, повышаются температуры плавления и кипения. Фтороводорода имеет аномально высокие температуры плавления (-83 ° С) и кипения (-19,5 ° С), что объясняется образованием водородных связей между молекулами НF.
Благодаря высокой полярности галогеноводороды хорошо растворяются в воде с образованием кислот, сила которых увеличивается в ряду НF-НСl-НВr-НЕ (вследствие увеличения радиуса). Восстановительная активность галоґенид ионов в ряду F- → СИ- → Br- → I- также увеличивается. НЕТ – сильный восстановитель, применяется в органическом синтезе. На воздухе водный раствор НЕТ постепенно окисляется кислородом воздуха:
4HI + O2 → 2I2 + 2H2O
Аналогично ведет себя и НВr. Плавиковая (НF) и соляная кислота (НСl) не реагируют с концентрированной серной кислотой, а НВr и НЕТ окисляются ней.
Основное количество соляной кислоты получают при хлорировании, дехлорирования органических соединений, пиролизе (расписание при нагревании без доступа воздуха) хлорорганических отходов – побочных продуктов различных процессов. Кроме того, галогеноводороды получают:
прямым синтезом из элементов: Н2 + Г2 2НГ
Эта цепная реакция, которая тоже лежит в основе промышленного получения HCl, инициируется светом, влагой, твердыми пористыми веществами.
вытеснением НГ с их солей (лабораторные методы добычи):
CaF2 + H2SO4 → CaSO4 ↓ + 2HF;
NaCl + H2SO4 (к) → NaHSO4 + HCl;
NaHSO4 + NaCl → Na2SO4 + HCl.
– Кислоты НВr, ни получают гидролизом галоґенидив фосфора:
PЕ3 + 3H2O → H3PO3 + 3HЕ (Е – Br или I).
Особенностью НF и его водных растворов является разрушение кварца и стекла:
SiO2 + 4HF → SiF4 + 2H2O
SiF4 + 2HF → H2
Поэтому HF хранят в полиэтиленовой посуде или стеклянной, но покрытом внутри воском или парафином. Редкий НF – сильно ионизирующего растворитель. С водой смешивается в любых соотношениях. В разбавленных водных растворах существует равновесие:
HF + H2O H3O + + F-;
F- + HF HF2-;
При нейтрализации НF можно получить калий бифторид (калий гидроґенфторид):
2HF + KOH → KHF2 + H2O
KHF2 + KOH → 2KF + H2O
Фториды (соли плавиковой кислоты) – малорастворимые в воде (исключение – NaF, KF, NH4F, AgF, SnF2), их разделяют, аналогично оксидам, на кислотные (SiF4), основные (NaF) и амфотерные (AlF3). Могут реагировать между собой:
2NaF + SiF4 → Na2
KF + SbF5 → K
3KF + AlF3 → K3
Хлориды – соли соляной кислоты – растворяются в воде, за исключением АgСl, НgСl2, Hg2Cl2, РbСl2.
Бромиды, йодиды – растворяются в воде, за исключением АgВr, АgI, РbI2, РbВr2.
Соединения галогенов С кислорода
Бинарные оксигенвмисних соединения фтора называются фторид (Флуор более электроотрицательным чем кислород). Стойким при обычных условиях является оксиґен дифлуорид – ОF2, который образуется по реакции:
2NaOH + 2F2 → 2NaF + OF2 + H2O
ОF2 – светло-желтый газ, реакционно активный, сильный окислитель:
2H2 + OF2 → H2O + 2HF.
Другие галогены в соединениях с кислорода проявляют положительные степени окисления.
Среди оксидов практическое значение имеет И2О5 (единственный термодинамически устойчив оксид галогенидов) – бесцветное кристаллическое вещество. Окислитель средней силы, применяется для количественного определения СО:
I2O5 + 5CO → I2 + 5CO2
I2 + 2Na2S2O3 → 2NaI + Na2S4O6
Оксиґеновмисни соединения хлора получают косвенным путем. Сравнительно стабильными являются Сl2О, ClO2, Cl2O7:
Сl2O – темно-желтый газ с резким запахом, ядовит, неустойчивый, может взрываться. Получают этот оксид по реакции: 2HgO + 2Cl2 → HgCl2 + Cl2O.
Cl2O реагирует с водой: Cl2O + H2O → 2HOCl или 2НСl – хлорноватистая кислота. Эта кислота является неустойчивой, существует только в разбавленном растворе.
НОСl и ее соли гипохлориты – сильные окислители:
NaOCl + 2KI + H2SO4 → I2 + NaCl + K2SO4 + H2O
ClO2 – газ зеленовато-желтого цвета, с резким запахом, ядовит, при нагревании может взрываться, энергичный окислитель.
ClO2, единственный из оксидов галогенов, который получают в промышленных масштабах за реакциями:
КClO3 + H2SO4 → HClO3 + KHSO4
3HClO3 → 2ClO2 + HClO4 + H2O
В воде СlО2 диспропорционирует, как и в растворах щелочей:
2СlО2 + H2O → HClO3 + HClО2
хлорноватая кислота хлоритна кислота
2ClO2 + 2KOH → KClO3 + KClO2 + H2O
Сl2О7 – маслянистая жидкость, взрывается при нагревании до 120 ° С, получают по реакции: 4HClO4 + Р4О10 → 2Cl2O7 + 4НРО3.
Cl2O7 реагирует с водой: Cl2O7 + H2O → 2HClO4

Гипогалогенитни кислоты НПО известны только в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией ртути оксида:
2I2 + HgO + H2O → HgI2 + 2HOI.
Это слабые кислоты, в ряду HOCl → HOBr → HOI уменьшается сила кислот, основные свойства увеличиваются. HOI уже амфотерна соединение.
Гипогалогениты – неустойчивые соединения с сильными окислительными свойствами, получают при взаимодействии Г2 с охлажденным раствором щелочи. Таким образом получают в промышленности хлорная известь, долгое время широко применялось в качестве дезинфицирующего и отбеливающего средства:

С оксигеновмисних кислот галогенов НГО2 известна только хлористая кислота HClO2, в свободном состоянии неустойчива кислота средней силы (Кд = 10-2). Технического значения она не имеет. Практическое значение имеет NaClO2 – сильный окислитель, применяется как отбеливающее средство для тканей, в небольшом количестве (около 0,4%) входит в стирального порошка. Получают по реакции:
Na2O2 + 2ClO2 → O2 + 2NaClO2
Оксокислоты НГО3 более устойчивыми, чем НГО. HClO3, HВrO3 существуют только в растворах, концентрация которых не превышает 50%, а HIO3 выделена как индивидуальная соединение.
В ряду HClO3 → HBrO3 → HIO3 сила кислот снижается, они более слабыми окислителями, чем НОГ.
HClO3 получают в процессе реакций:
6Ba (OH) 2 + 6Cl2 → 5BaCl2 + Ba (ClO3) 2 + 6H2O
Ba (ClO3) 2 + H2SO4 → BaSO4 ↓ + 2HClO3
HBrO3 получают по реакции:
Br2 + 5Cl2 + 6H2O → 2HBrO3 + 10HCl
HIO3 можно получить:
3I2 + 10HNO3 → 6HIO3 + 10NO + 2H2O
Соли этих кислот, сильные окислители, получают по реакции:
3Г2 + 6КОН → КЕО3 + 5ке + 3Н2О
Широкое использование в промышленности имеет KClO3 – бертолетовая соль – применяется в изготовлении спичек, фейерверкив, взрывчатых веществ.
Оксокислоты НГО4
НСlО4 – жидкость, дымит на воздухе. Ее получают в ходе реакции:
KClO4 + H2SO4 → HClO4 + KHSO4
Безводная НСlО4 – очень сильный окислитель, одна из самых сильных кислот, которая применяется в неорганическом и органическом синтезе. Соли – перхлораты, большинство которых растворяется в воде, за исключением КСlО4, RbClO4, CsClO4, Mg (ClO4) 2 (техническое название “Ангидрон») – один из самых сильных осушителей.
Бромная кислота известна только в водных растворах.
Перйодатная кислота H5IO6 – слабая кислота, хорошо растворимый в воде, образует средние и кислые соли. Кислоту получают по реакции:
Ba5 (IO6) 2 + 5H2SO4 → 5BaSO4 + 2H5IO6.
Соли Перйодатная кислоты можно получить:
KIO3 + Cl2 + 6KOH → K5IO6 + 2KCl + 3H2O
Межгалогенные СОЕДИНЕНИЯ
В отличие от элементов других групп галогены взаимодействуют друг с другом с образованием большого количества интергалогенидив с общей формулой ХYn (n = 1, 3, 5,7) – таблица 2.3, где Y – более легкий и электроотрицательным галоген. Получают их непосредственным взаимодействием простых веществ, при различных соотношений реагентов, температур и давлений.
Все интергалогениды, кроме ВrСl, разлагаются под действием воды. Имеют сильные окисювальни свойства.
2.7 Использование

Галогены и их соединения широко применяются в промышленности, сельском хозяйстве, быту. По масштабам промышленного производства первое место среди галогенов занимает хлор, второе – фтор. Основные сферы применения галогенов и их соединений приведены в таблице 2.4
Кроме того, оксигенвмисних соединения галогенов применяют в пиротехнике. Соединения фтора используются для производства глазури и эмали; HF – для травления стекла. Хлорсодержащие соединения широко применяют в качестве боевых отравляющих веществ (фосген, иприт, хлорпикрин и т.д.). АgВr используют в фотографии, КВr – в оптике. Йод и бром применяют в галогенных лампах. Распиловка в облаках аэрозолей АgI i PbI2 вызывает (искусственно) дождь, является средством борьбы с градом. Некоторые йодорганични соединения используются для производства сверхмощных газовых лазеров.
2.8 Биологическая роль и токсикология

Фтор и его соединения чрезвычайно ядовиты. F2 имеет раздражающее действие, в несколько раз более чем НF. Попадая на кожу, НF растворяет белки, глубоко проникает в ткани, вызывает тяжелые язвы. Фтор в составе фторапатита входит в состав зубной эмали, его дефицит вызывает кариес, а избыток – повышение ломкости костей.
Хлор относится к группе удушливых веществ, вызывает сильное раздражение слизистых оболочек, может привести к отеку легких. Высокие концентрации приводят к рефлекторного торможения дыхательного центра. Хлор – важнейший биогенный элемент. Хлорид-ионы входят в состав желудочного сока, участвуют в различных внутриклеточных процессах – поддержании осмотического давления и регуляции водно-солевого обмена.
Пары брома также приводят к раздражению слизистых оболочек, головокружение, а более высокие концентрации вызывают спазмы дыхательных путей поражения обонятельного нерва. При попадании жидкого брома на кожу образуются очень болезненные ожоги и язвы, трудно загаюються. Соединения брома регулируют процессы возбуждения и торможение центральной нервной системы.
Вдыхание паров йода вызывает поражение почек и сердечно-сосудистой системы, дыхательных путей, возможен отек легких. При попадании на слизистую глаз появляется боль в глазах, покраснение, слезоточивость. Йод входит в состав тиреоидных гормонов щитовидной железы (тироксин, трийодтиронин), которые играют очень важную роль в обмене веществ.

1. Какие степени окисления проявляют галогены в соединениях? Какие особенности валентных состояний фтора? Почему металлы проявляют высшие степени окисления в соединениях с фтора?
2. Проанализируйте изменения свойств в ряду галогенов.
3. Проиллюстрируйте реакциями промышленные и лабораторные способы получения галогенов.
4. Приведите сравнительную характеристику окислительно-восстановительных свойств галогенов на примере различных реакций.
5. Как изменяются физические и химические свойства в ряду НF-НСl-НВr-НЕТ?
6. Напишите уравнения реакций взаимодействия галогенов с водой и щелочами.
7. Как изменяются сила и окислительно-восстановительные свойства оксигенвмисних кислот галогенов? Ответ аргументируйте.
8. Какие неорганические соединения фтора, хлора, брома и йода используются в медицине? В каких еще отраслях широко используются галогены и их соединения?
9. Напишите уравнения реакций, с помощью которых можно осуществить превращения:
РbВr2 → HBr → Br2 → КBrO3 → НBrO3 → FeBr3;
Сl2 → КClO3 → КClО4 → НClО4 → ClO2 → НClO3;
Сl2 → НCl → КCl → Cl2 → ВаCl2 → НCl.
10. Какую биологическую роль в организме человека играют галогены?

Элементы 7Б-группы – марганец, искусственно полученный технеций, рений и искусственно полученный борий – завершают первые пятерки вставных декад d-элементов. Их валентная электронная конфигурация (n-1)d 5 s 2 . Имея на внешней электронной оболочке атома всего 2 электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов (входящих с ними в одну группу), водородных соединений не образуют. Однако высшие водородные соединения этих элементов до некоторой степени сходны с соответствующими соединениями галогенов, так как в образовании связей с кислородом у них, как и у галогенов, могут участвовать семь электронов. Поэтому их высшая степень окисления равна +7.

В комплексных соединениях координационные числа марганца: 4 и 6, а технеция и рения: 7, 8, 9.

Из элементов подгруппы марганца наибольшее практическое значение имеет сам марганец. Рений – редкий элемент, однако, благодаря ряду ценных свойств, находит применение в технике. Технеций в земной коре не встречается. Он был получен искусственно, бомбардировкой ядер атомов молибдена ядрами тяжелого изотопа водорода – дейтронами.

Основная масса металлического марганца получается в настоящее время путем алюмотермического восстановления пиролюзита, гаусманита или предварительно обожженных карбонатных и сульфидных руд:

3Mn 3 O 4 + 8Al = 9Mn + 4Al 2 O 3

Рений получают из отходов медного и молибденово-вольфрамового производства. Через ряд последовательных реакций рений переводят в перренат калия, который восстанавливают водородом при нагревании:

2KReO 4 + 7H 2 = 2KOH + 2Re + 6H 2 O

По химической устойчивости элементы подгруппы марганца заметно различаются. Марганец в электрохимической ряду напряжений располагается между магнием и цинком и является, таким образом, довольно активным металлом, то технеций и рений относятся к благородным металлам.

Для марганца могут быть получены следующие оксиды: MnO, Mn 2 O 3 , MnO 2 , Mn 2 O 7 . С увеличением степени окисления марганца свойства оксидов меняются от основных через амфотерные к кислотным:

MnO Mn 2 O 3 MnO 2 Mn 2 O 7 .

Основные св-ва уменьшаются, кислотные – увеличиваются.

Оксиды технеция и рения, отвечающие низшим степеням окисления, получаются лишь косвенным путем. При нагревании на воздухе оба элемента образуют высшие оксиды Э 2 О 7 .

Устойчивые степени окисления марганца +2, +4, +7 в соединениях кислотного и солевого характера.

Оксид марганца (II) MnO встречается в природе в виде мелких зеленых кристаллов, плохо растворимых в воде. При нагревании на воздухе превращается в разные оксиды:

MnO → MnO 2 → Mn 2 O 3 → MnO 3

MnO растворяется в кислотах:



MnO + 2H+ + 5H 2 O → 2+

Обработка аквакомплекса 2+ при рН=8,5 в атмосфере водорода

приводит к образованию нерастворимого гидроксида марганца (II):

2+ + 2OH- → Mn(OH) 2 ↓ + 6H 2 O

Гидроксид марганца (II) обладает слабоосновными свойствами, окисляется кислородом воздуха и другими окислителями до марганцеватистой кислоты или ее солей манганитов:

Mn(OH) 2 + H 2 O 2 → H 2 MnO 3 ↓ + H 2 O

Марганцеватистая кислота выпадает в осадок.

В щелочной среде Mn 2+ окисляется до MnO 4 2- , а в кислой – до MnO 4 -

MnSO 4 + 2KNO 3 + 4KOH→K 2 MnO 4 + 2KNO 2 + K 2 SO 4 + 2H 2 O

В биологических процессах Mn 2+ не меняет степени окисления. Устойчивые биокомплексы марганца в организме стабилизируют эту степень окисления. Стабилизирующее действие проявляется в большом времени удержания гидратной оболочки.

MnO 2 является устойчивым природным соединением марганца, которое встречается в четырех модификациях. Все модификации имеют амфотерный характер и обладают окислительно-восстановительной двойственностью:

MnO 2 + 2KI + 3CO 2 + H 2 O → I 2 + MnCO 3 + 2KHCO 3

6MnO 2 + 2NH 3 → 3Mn 2 O 3 + N 2 + 3H 2 O

4MnO 2 + 3O 2 + 4KOH → 4KMnO 4 + 2H 2 O

2MnO 2 + 3Cl 2 + 8KOH → 2KMnO 4 + 6KCl + 4H 2 O

Производные Mn (VII) - это оксид марганца Mn 2 O 7 и его гидратная форма – марганцевая кислота HMnO 4 , известная только в растворе.

Соли марганцевой кислоты – перманганаты. Ионы обусловливают фиолетовую окраску растворов. Перманганаты – сильные окислители. Это свойство используется в медицинской практике для дезинфекции. KMnO 4 применяют в титриметрическом анализе для определения различных восстановителей (перманганатометрия), используют в экологии для оценки загрязненности сточных вод.

Похожие публикации