Равноускоренное движение, вектор ускорения, направление, перемещение. Формулы, определение, законы - учебные курсы

При прямолинейном движении векторы и направлены вдоль одной прямой, которая является в то же время и траекторией движения. Вдоль этой же прямой в направлении движения телами условились направлять и координатную ось (ось X). В таком случае вектор разности а значит и вектор ускорения а, лежш на той же прямой (см. § 6). Но куда он направлен - в сторону движения (так же как ось X) или против него?

В § 6 мы видели, что проекция разности двух векторов на какую-нибудь ось равна разности их проекций на ту же ось. Следовательно, для проекций векторов и на ось X можно написать

Здесь а - проекция вектора а на ось проекции векторов и на ту же ось.

Так как все три вектора лежат на одной прямой (оси X), то абсолютные значения их проекций равны абсолютным значениям самих векторов.

Рассмотрим 2 случая ускоренного движения тела.

Первый случай. Скорость тела по абсолютному значению растет (тело «разгоняется»). Это значит, что Тогда из формулы (1) видно, что проекция ускорения а положительна и равна Вектор а, следовательно, направлен так же, как ось X, т. е. в сторону движения. Когда, например, бронебойный снаряд движется при выстреле в стволе орудия, его скорость растет и ускорение направлено так же, как и скорость (рис. 39).

Второй случай. Тело тормозится, т. е. абсолютное значение его скорости уменьшается Из формулы (1) видно, что проекция ускорения а в этом случае отрицательна:

Из формулы (1) можно получить выражение для скорости :

В этой формуле, повторяем, - проекции векторов на ось X, которые могут быть как положительными, так и отрицательными.

При решении задач выражение для скорости (2) удобно записывать так, чтобы из него сразу было видно, как направлен вектор ускорения.

Если скорость тела растет (разгон), то и

Когда же скорость тела уменьшается (торможение),

Понятно, что тело, которое тормозится, должно когда-то остановиться. Это произойдет, как это видно из формулы (26), тогда, когда станет равным т. е. в момент времени Но если ускорение остается постоянным (по модулю и направлению) и после этого момента, то тело, остановившись, начнет двигаться в противоположную сторону. Это видно из того, что при станет больше, чем скорость изменит свой знак на обратный. Так

движется, например, тело, брошенное вертикально вверх: долетев до высшей точки траектории, тело начинает движение вниз.

Если и вектор ускорения направлен так же, как и ось координат, то из формулы (2а) следует, что

Если же ось координат выбрана так, что направление вектора ускорения противоположно направлению оси координат, то из формулы (26) следует, что

Знак в этой формуле означает, что вектор скорости, так же как и вектор ускорения, направлен противоположно направлению оси координат. Модуль скорости, конечно, и в этом случае увеличивается со временем.

Обычно мы называем движение с возрастающей по абсолютной величине скоростью ускоренным движением, а движение с убывающей скоростью медленным движение Но в механике любое неравномерное движение является ускоренным движением. Трогается ли автомобиль с места или тормозит, в обоих случаях он движется с ускорением. Ускоренное прямолинейное движение отличается от замедленного только знаком проекции вектора ускорения.

Мы знаем, что и перемещение, и скорость, и траектория движения различны относительно разных тел отсчета, движущихся друг относительно друга.

А ускорение? Относительно ли оно?

Ускорение тела, как мы теперь знаем, определяется векторной разностью двух значений его скорости в различные моменты времени. При переходе от одной системы координат к другой, движущейся относительно первой равномерно и прямолинейно, изменятся оба значения скорости. Но изменятся они на одну и ту же величину. Разность же их останется неизменной. Поэтому и ускорение останется неизменным.

Во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно, ускорение тела одинаково.

Но ускорения тела будут различными в системах отсчета, движущихся с ускорением друг относительно друга. В этом случае ускорения складываются так же, как скорости (см. § 10).

Задача. Автомобиль проезжает мимо наблюдателя, двигаясь со скоростью 10 м/сек. В этот момент водитель нажимает на тормоз, и автомобиль начинает двигаться с ускорением Сколько времени пройдет с того момента, когда водитель нажал на тормоз, до остановки автомобиля?

Решение. Выберем за начало отсчета то место, в котором находится наблюдатель, и направим координатную ось в сторону движения автомобиля. Тогда проекция скорости автомобиля на эту ось будет положительной. Так как скорость автомобиля

уменьшается, то проекция ускорения отрицательна и мы должны воспользоваться формулой (26):

Подставляя в эту формулу численные значения заданных величин, получим:

За положительное направление координатной оси можно принять и направление, противоположное движению. Тогда проекция начальной скорости автомобиля будет отрицательной а проекция ускорения - положительной, и применять тогда нужно формулу (2а):

Результат получился тот же. Да он и не может зависеть от того, как выбрано направление оси координат!

Упражнение 9

1. Что такое ускорение и для чего его нужно знать?

2. При любом неравномерном движении изменяется скорость. Как ускорение характеризует это изменение?

3. Чем отличается замедленное прямолинейное движение от ускоренного?

4. Что такое равноускоренное движение?

5. Троллейбус, трогаясь с места, движется с постоянным ускорением Через сколько времени он приобретет скорость 54 км/ч?

6. Автомобиль, движущийся со скоростью 36 км/ч, останавливается при торможении в течение 4 сек. С каким ускорением движется автомобиль при торможении?

7. Грузовик, двигаясь с постоянным ускорением, на некотором участке пути увеличил свою скорость с 15 до 25 м/сек. За какое время произошло это увеличение скорости, если ускорение грузовика равно

8. Какая скорость движения была бы достигнута, если бы тело двигалось прямолинейно с ускорением в течение 0,5 ч при начальной скорости, равной нулю?

Ускорение - это быстрота изменения скорости . В системе СИ ускорение измеряется в метрах за секунду в квадрате (м/с 2), то есть показывает, на сколько изменяется скорость тела за одну секунду.

Если, например, ускорение тела равно 10 м/с 2 , то это значит, что за каждую секунду скорость тела увеличивается на 10 м/с. Так, если до начала ускорения тело двигалось с постоянной скоростью 100 м/с, то после первой секунды движения с ускорением его скорость составит 110 м/с, после второй - 120 м/с и т. д. В данном случае скорость тела постепенно увеличивалась.

Но скорость тела может постепенно и уменьшаться. Обычно так происходит при торможении. Если то же тело, двигавшееся с постоянной скоростью 100 м/с, начинает уменьшать свою скорость на 10 м/с в каждую секунду, то через две секунды его скорость будет равна 80 м/с. А через 10 с тело вообще остановится.

Во втором случае (при торможении) мы можем сказать, что ускорение является отрицательной величиной. Действительно, чтобы найти текущую скорость после начала торможения, надо из начальной скорости вычесть ускорение умноженное на время. Например, какова скорость тела через 6 секунд после торможения? 100 м/с - 10 м/с 2 · 6 с = 40 м/с.

Поскольку ускорение может принимать как положительные, так и отрицательные значения, то это значит, что ускорение является векторной величиной.

Из рассмотренных примеров мы могли бы сказать, что при разгоне (увеличении скорости) ускорение положительная величина, а при торможении - отрицательная. Однако не так все просто, когда мы имеем дело с системой координат. Здесь скорость тоже оказывается величиной векторной, способной быть как положительной, так и отрицательной. Поэтому то, куда направлено ускорение, зависит от направления скорости, а не от того, уменьшается скорость или увеличивается под действием ускорения.

Если скорость тела направлена в положительном направлении оси координат (скажем, X), то тело за каждую секунду времени увеличивает свою координату. Так, если в момент начала измерения тело находилось в точке с координатой 25 м и начало двигаться с постоянной скоростью 5 м/с в положительном направлении оси X, то через одну секунду тело будет находиться в координате 30 м, через 2 с - 35 м. Вообще, чтобы найти координату тела в определенный момент времени, надо к начальной координате прибавить скорость умноженную на количество прошедшего времени. Например, 25 м + 5 м/с · 7 с = 60 м. В данном случае тело через 7 секунд окажется в точке с координатой 60. Здесь скорость - положительная величина, так как координата увеличивается.

Скорость отрицательна, когда ее вектор направлен в отрицательном направлении оси координат. Пусть тело из предыдущего примера начало двигаться не в положительном, а в отрицательном направлении оси X с постоянной скоростью. Через 1 с тело будет в точке с координатой 20 м, через 2 с - 15 м и т. д. Теперь чтобы найти координату, надо из начальной вычесть скорость умноженную на время. Например, где будет тело через 8 с? 25 м - 5 м/с · 8 с = -15 м. То есть тело окажется в точке с координатой x, равной -15. В формуле перед скоростью мы ставим знак минус (-5 м/с), значит скорость – отрицательная величина.

Назовем первый случай (когда тело двигается в положительном направлении оси X) A, а второй случай B. Рассмотрим, куда будет направлено ускорение при торможении и разгоне в обоих случаях.

В случае A при разгоне ускорение будет направлено в ту же сторону, что и скорость. Поскольку скорость положительна, то и ускорение будет положительно.

В случае A при торможении ускорение направлено в противоположном скорости направлении. Так как скорость положительная величина, то ускорение - будет отрицательной, то есть вектор ускорения будет направлен в отрицательном направлении оси X.

В случае B при разгоне направление ускорения будет совпадать с направлением скорости, а значит ускорение будет направлено в отрицательном направлении оси X (ведь туда же направлена и скорость). Обратите внимание, несмотря на то, что ускорение отрицательно, оно все же увеличивает модуль скорости.

В случае B при торможении ускорение направлено противоположно скорости. Так как скорость имеет отрицательное направление, то ускорение окажется положительной величиной. Но при этом будет уменьшать модуль скорости. Например, начальная скорость была -20 м/с, ускорение равно 2 м/с 2 . Скорость тела через 3 с, окажется равной -20 м/с + 2 м/с 2 · 3 с = -14 м/с.

Таким образом, ответ на вопрос «куда направлено ускорение» зависит от того, по отношению к чему оно рассматривается. По отношению к скорости ускорение может быть направлено в ту же сторону, что и скорость (при разгоне), или в противоположную сторону (при торможении).

В системе координат положительное и отрицательное ускорение само по себе ничего не говорит от том, тормозило ли тело (уменьшало свою скорость) или разгонялось (увеличивало скорость). Надо смотреть на то, куда направлена скорость.

Ускорение - физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения. Ускорение является важной кинематической характеристикой материальной точки.

Самый простой вид движения - равномерное движение по прямой линии, когда скорость тела постоянна и тело за любые равные промежутки времени проходит одинаковый путь.

Но большинство движений неравномерны. На одних участках скорость тела больше, на других меньше. Машина начиная движение двигается все быстрее. а останавливаясь замедляется.

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 5 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 5 м/с , т. е. в 5 раз быстрее, чем при ускорении 1 м/с 2 .

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным .

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. б).

Среднее и мгновенное ускорение

Среднее ускорение материальной точки на некотором промежутке времени - это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:

\(\lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)

Мгновенное ускорение материальной точки в некоторый момент времени - это лимит его среднего ускорения при \(\Delta t \to 0 \) . Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:

\(\vec a = \dfrac {d\vec v} {dt} \)

Тангенциальное и нормальное ускорение

Если записать скорость как \(\vec v = v\hat \tau \) , где \(\hat \tau \) - орт касательной к траектории движения, то (в двухмерной системе координат):

\(\vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \) ,

где \(\theta \) - угол между вектором скорости и осью абсцисс; \(\hat n \) - орт перпендикуляра к скорости.

Таким образом,

\(\vec a = \vec a_{\tau} + \vec a_n \) ,

где \(\vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) - тангенциальное ускорение, \(\vec a_n = \dfrac {d\theta} {dt} v \hat n \) - нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \(\hat n \) - это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное - по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \(\omega = \dfrac v r \) , где r - радиус кривизны траектории. В таком случае

\(a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Измерение ускорения

Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с 2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с 2 за каждую секунду изменяет свою скорость на 1 м/с.

Единицы измерения ускорения

  • метр в секунду в квадрате, м/с², производная единица системы СИ
  • сантиметр в секунду в квадрате, см/с², производная единица системы СГС
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

1. Ускорением называют величину, характеризующую изменение скорости в единицу времени. Зная ускорение тела и его начальную скорость, можно найти скорость тела в любой момент времени.

2. При любом неравномерном движении изменяется скорость. Как ускорение характеризует это изменение?

2. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении).

3. Чем отличается «замедленное» прямолинейное движение от «ускоренного»?

3. Движение с возрастающей по модулю скоростью называют «ускоренным» движением. Движение с убывающей скоростью «замедленным» движением.

4. Что такое равноускоренное движение?

4. Движение тела, при котором его скорость за любые промежутки времени изменяется одинаково, называется равноускоренным движением.

5. Может ли тело двигаться с большой скоростью, но с малым ускорением?

5. Может. Так как ускорение не зависит от значения скорости, а характеризует только ее изменение.

6. Как направлен вектор ускорения при прямолинейном неравномерном движении?

6. При прямолинейном неравномерном движении вектор ускорения а лежит на одной прямой с векторами V 0 и V .

7. Скорость - векторная величина, и изменяться может как модуль скорости, так и направление вектора скорости. Что именно изменяется при прямолинейном равноускоренном движении?

7. Модуль скорости. Так как векторы V и a лежат на одной прямой и знаки их проекций совпадают.

Ускорение точки - это пространственно-временная мера изме­нения движения. Она характеризует быстроту и направление изменения вектора скорости точки в данный момент времени. Ускорение измеряется пределом отношения изменения скорости к соответствующему промежутку времени (в данной системе от­счета), когда этот промежуток стремится к нулю: a=lim Dv /Dt

Скорость точки как вектор может изменяться по модулю , по направлению или одновременно и по модулю и по направлению. Соответственно различают ускорения точки:

а) положительное , имеющее одинаковое направление со ско­ростью,- скорость возрастает; б) отрицательное , имеющее направление, противоположное направлению скорости,- скорость убывает; в) нормальное - направление его перпендикулярно направлению скорости и вектор скорости изменяет только направле­ние, не изменяя своей величины (криволинейное движение).

При поступательном движении линейное ускорение тела равно линейному ускорению любой его точки.

При вращательном движении положительное и отрицательное ускорения, направленные по касательной, называются тангенциальными, а направленные по радиусу (нормали) - радиаль­ными или нормальными . Каждое из этих ускорений может проявляться независимо. Сочетание тангенциального ускорения с нор­мальным бывает при одновременном изменении скорости и по модулю, и по направлению. Векторная сумма нормального и тангенциального ускорений определяет полное ускорение.

При вращательном движении угловое ускорение тела характери­зует изменение скорости вращения.

Угловое ускорение - это мера изменения скорости вращатель­ного движения тела в данный момент времени. Угловое ускорение определяется как предел отношения изменения угловой скорости к соответствующему промежутку времени в данной системе отсчёта1, когда этот промежуток стремится к нулю:

Среднее ускорение за время всего движения, особенно в тех случаях, когда оно меняет знак, обычно не определяется, поскольку оно не характеризует подробности (детали) движения.

Угловое ускорение может быть либо положительным (убыстрение вращения), либо отрицательным (замедление вращения). Для вращающегося твердого тела отношения линейных ускорений точек к их радиусам вращения (расстояниям до оси) одинаковы; они равны угловому ускорению тела: a/r=e

Линейное ускорение точки вращающегося тела равно произведению углового ускорения и радиуса вращения: a=er(в радианном измере­нии);

В сложном движении тела (одновременно поступательном и враща­тельном) изменения скорости измеряют линейным ускорением ОЦТ и угловым ускорением тела относительно его ОЦТ.

Определение угловых ускорений биомеханической системы еще бо­лее затруднено, чем определение угловых скоростей.

Таким образом, ускорение характеризует непостоянство скорости.

Скорости точек звеньев тела человека изменяются по модулю и направлению. Значит, всегда есть нормальные ускорения и почти всегда - тангенциальные (положительные и отрицательные). Движений тела человека без ускорений не бывает , но ускорения иногда могут оказаться настолько малыми, что практиче­ски не будут иметь значения.

Похожие публикации