Егэ максимум задания с параметрами. Решение задачи с параметрами

Цель данной работы – изучение различных способов решения задач с параметрами. Возможность и умение решать задачи с параметрами демонстрируют владение методами решения уравнений и неравенств, осмысленное понимание теоретических сведений, уровень логического мышления, стимулируют познавательную деятельность. Для развития этих навыков необходимы длительнее усилия, именно поэтому в профильных 10-11 классах с углубленным изучением точных наук введен курс: “Математический практикум”, частью которого является решение уравнений и неравенств с параметрами. Курс входит в число дисциплин, включенных в компонент учебного плана школы.

Успешному изучению методов решения задач с параметрами могут помочь элективный или факультативный курсы, или компонент за сеткой по теме: “Задачи с параметрами”.

Рассмотрим четыре больших класса задач с параметрами:

  1. Уравнения, неравенства и их системы, которые необходимо решить для любого значения параметра, либо для значений параметра, принадлежащих определенному множеству.
  2. Уравнения, неравенства и их системы, для которых требуется определить количество решений в зависимости от значения параметра.
  3. Уравнения, неравенства и их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения (системы, неравенства) имеют заданное число решений.
  4. Уравнения, неравенства и их системы, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Методы решений задач с параметрами.

1. Аналитический метод.

Это способ прямого решения, повторяющий стандартные процедуры нахождения ответа в задачах без параметра.

Пример 1. Найдите все значения параметра a , при которых уравнение:

(2a – 1)x 2 + ax + (2a – 3) =0 имеет не более одного корня.

При 2a – 1 = 0 данное уравнение квадратным не является, поэтому случай a =1/2 разбираем отдельно.

Если a = 1/2, то уравнение принимает вид 1/2x – 2 = 0, оно имеет один корень.

Если a ≠ 1/2, то уравнение является квадратным; чтобы оно имело не более одного корня необходимо и достаточно, чтобы дискриминант был неположителен:

D = a 2 – 4(2a – 1)(2a – 3) = -15a 2 + 32a – 12;

Чтобы записать окончательный ответ, необходимо понять,

2. Графический метод.

В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики в координатной плоскости (x;y ) или в плоскости (x;a ).

Пример 2. Для каждого значения параметра a определите количество решений уравнения .

Заметим, что количество решений уравнения равно количеству точек пересечения графиков функций и y = a.

График функции показан на рис.1.

y = a – это горизонтальная прямая. По графику несложно установить количество точек пересечения в зависимости от a (например, при a = 11 – две точки пересечения; при a = 2 – восемь точек пересечения).

Ответ: при a < 0 – решений нет; при a = 0 и a = 25/4 – четыре решения; при 0 < a < 6 – восемь решений; при a = 6 – семь решений; при

6 < a < 25/4 – шесть решений; при a > 25/4 – два решения.

3. Метод решения относительно параметра.

При решении этим способом переменные х и а принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение становится более простым. После упрощений нужно вернуться к исходному смыслу переменных х и а и закончить решение.

Пример 3. Найти все значения параметра а , при каждом из которых уравнение = -ax +3a +2 имеет единственное решение.

Будем решать это уравнение заменой переменных. Пусть = t , t ≥ 0 , тогда x = t 2 + 8 и уравнение примет вид at 2 + t + 5a – 2 = 0 . Теперь задача состоит в том, чтобы найти все а , при которых уравнение at 2 + t + 5a – 2 = 0 имеет единственное неотрицательное решение. Это имеет место в следующих случаях.

1) Если а = 0, то уравнение имеет единственное решение t = 2.

Решение некоторых типов уравнений и неравенств с параметрами.

Задачи с параметрами помогают в формировании логического мышления, в приобретении навыков исследовательской деятельности.

Решение каждой задачи своеобразно и требует к себе индивидуального, нестандартного подхода, поскольку не существует единого способа решения таких задач.

. Линейные уравнения.

Задача № 1. При каких значениях параметра b уравнение не имеет корней?

. Степенные уравнения, неравенства и их системы.

Задача №2. Найти все значения параметра a , при которых множество решений неравенства:

содержит число 6, а также содержит два отрезка длиной 6, не имеющие общих точек.

Преобразуем обе части неравенства.

Для того, чтобы множество решений неравенства содержало число 6, необходимо и достаточно выполнение условия:

Рис.4

При a > 6 множество решений неравенства: .

Интервал (0;5) не может содержать ни одного отрезка длины 6. Значит, два непересекающихся отрезка длины 6 должны содержаться в интервале (5; a ).

. Показательные уравнения, неравенства и системы.

Задача № 3. В области определения функции взяли все целые положительные числа и сложили их. Найти все значения, при которых такая сумма будет больше 5, но меньше 10.

1) Графиком дробно-линейной функции является гипербола. По условию x > 0. При неограниченном возрастании х дробь монотонно убывает и приближается к нулю, а значения функции z возрастают и приближаются к 5. Кроме того, z(0) = 1.

2) По определению степени область определения D(y) состоит из решений неравенства . При a = 1 получаем неравенство, у которого решений нет. Поэтому функция у нигде не определена.

3) При 0 < a < 1 показательная функция с основанием а убывает и неравенство равносильно неравенству . Так как x > 0 , то z (x ) > z (0) = 1 . Значит, каждое положительное значение х является решением неравенства . Поэтому для таких а указанную в условии сумму нельзя найти.

4) При a > 1 показательная функция с основанием а возрастает и неравенство равносильно неравенству . Если a ≥ 5, то любое положительное число является его решением, и указанную в условии сумму нельзя найти. Если 1 < a < 5, то множество положительных решений – это интервал (0;x 0) , где a = z (x 0) .

5) Целые числа расположены в этом интервале подряд, начиная с 1. Вычислим суммы последовательно идущих натуральных чисел, начиная с 1: 1; 1+2 = 3; 1+2+3 = 6; 1+2+3+4 = 10;… Поэтому указанная сумма будет больше 5 и меньше 10, только если число 3 лежит в интервале (0;x 0), а число 4 не лежит в этом интервале. Значит, 3 < x 0 ≤ 4 . Так как возрастает на , то z (3) < z (x 0) ≤ z (4) .

Решение иррациональных уравнений и неравенств, а также уравнений, неравенств и систем, содержащих модули рассмотрены в Приложении 1.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа.

По статистике многие из выпускников не приступают к решению задач с параметрами на ЕГЭ. По данным ФИПИ всего 10% выпускников приступают к решению таких задач, и процент их верного решения невысок: 2–3%, поэтому приобретение навыков решения трудных, нестандартных заданий, в том числе задач с параметрами, учащимися школ по-прежнему остается актуальным.

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О

имеет ровно четыре решения.

(ЕГЭ 2018, основная волна)

Второе уравнение системы можно переписать в виде \(y=\pm x\) . Следовательно, рассмотрим два случая: когда \(y=x\) и когда \(y=-x\) . Тогда количество решений системы будет равно сумме количества решений в первом и во втором случаях.

1) \(y=x\) . Подставим в первое уравнение и получим: \ (заметим, что в случае \(y=-x\) мы поступим так же и тоже получим квадратное уравнение)
Чтобы исходная система имела 4 различных решения, нужно, чтобы в каждом из двух случаев получилось по 2 решения.
Квадратное уравнение имеет два корня, когда его \(D>0\) . Найдем дискриминант уравнения (1):
\(D=-4(a^2+4a+2)\) .
Дискриминант больше нуля: \(a^2+4a+2<0\) , откуда \(a\in (-2-\sqrt2; -2+\sqrt2)\) .

2) \(y=-x\) . Получаем квадратное уравнение: \ Дискриминант больше нуля: \(D=-4(9a^2+12a+2)>0\) , откуда \(a\in \left(\frac{-2-\sqrt2}3; \frac{-2+\sqrt2}3\right)\) .

Необходимо проверить, не совпадают ли решения в первом случае с решениями во втором случае.

Пусть \(x_0\) – общее решение уравнений (1) и (2), тогда \ Отсюда получаем, что либо \(x_0=0\) , либо \(a=0\) .
Если \(a=0\) , то уравнения (1) и (2) получаются одинаковыми, следовательно, имеют одинаковые корни. Этот случай нам не подходит.
Если \(x_0=0\) – их общий корень, то тогда \(2x_0^2-2(3a+2)x_0+(2a+2)^2+a^2-1=0\) , откуда \((2a+2)^2+a^2-1=0\) , откуда \(a=-1\) или \(a=-0,6\) . Тогда вся исходная система будет иметь 3 различных решения, что нам не подходит.

Учитывая все это, в ответ пойдут:

Ответ:

\(a\in\left(\frac{-2-\sqrt2}3; -1\right)\cup\left(-1; -0,6\right)\cup\left(-0,6; -2+\sqrt2\right)\)

Задание 2 #4032

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых система \[\begin{cases} (a-1)x^2+2ax+a+4\leqslant 0\\ ax^2+2(a+1)x+a+1\geqslant 0 \end{cases}\]

имеет единственное решение.

Перепишем систему в виде: \[\begin{cases} ax^2+2ax+a\leqslant x^2-4\\ ax^2+2ax+a\geqslant -2x-1 \end{cases}\] Рассмотрим три функции: \(y=ax^2+2ax+a=a(x+1)^2\) , \(g=x^2-4\) , \(h=-2x-1\) . Из системы следует, что \(y\leqslant g\) , но \(y\geqslant h\) . Следовательно, чтобы система имела решения, график \(y\) должен находиться в области, которая задается условиями: “выше” графика \(h\) , но “ниже” графика \(g\) :

(будем называть “левую” область областью I, “правую” область – областью II)
Заметим, что при каждом фиксированном \(a\ne 0\) графиком \(y\) является парабола, вершина которой находится в точке \((-1;0)\) , а ветви обращены либо вверх, либо вниз. Если \(a=0\) , то уравнение выглядит как \(y=0\) и графиком является прямая, совпадающая с осью абсцисс.
Заметим, что для того, чтобы исходная система имела единственное решение, нужно, чтобы график \(y\) имел ровно одну общую точку с областью I или с областью II (это значит, что график \(y\) должен иметь единственную общую точку с границей одной из этих областей).

Рассмотрим по отдельности несколько случаев.

1) \(a>0\) . Тогда ветви параболы \(y\) обращены вверх. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) касалась границы области I или границы области II, то есть касалась параболы \(g\) , причем абсцисса точки касания должна быть \(\leqslant -3\) или \(\geqslant 2\) (то есть парабола \(y\) должна коснуться границы одной из областей, которая находится выше оси абсцисс, раз парабола \(y\) лежит выше оси абсцисс).

\(y"=2a(x+1)\) , \(g"=2x\) . Условия касания графиков \(y\) и \(g\) в точке с абсциссой \(x_0\leqslant -3\) или \(x_0\geqslant 2\) : \[\begin{cases} 2a(x_0+1)=2x_0\\ a(x_0+1)^2=x_0^2-4 \\ \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right. \end{cases} \quad\Leftrightarrow\quad \begin{cases} \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right.\\ a=\dfrac{x_0}{x_0+1}\\ x_0^2+5x_0+4=0 \end{cases}\] Из данной системы \(x_0=-4\) , \(a=\frac43\) .
Получили первое значение параметра \(a\) .

2) \(a=0\) . Тогда \(y=0\) и видно, что прямая имеет бесконечное множество общих точек с областью II. Следовательно, это значение параметра нам не подходит.


3) \(a<0\) . Тогда ветви параболы \(y\) обращены вниз. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) имела одну общую точку с границей области II, лежащей ниже оси абсцисс. Следовательно, она должна проходить через точку \(B\) , причем, если парабола \(y\) будет иметь еще одну общую точку с прямой \(h\) , то эта общая точка должна быть “выше” точки \(B\) (то есть абсцисса второй точки должна быть \(<1\) ).

Найдем \(a\) , при которых парабола \(y\) проходит через точку \(B\) : \[-3=a(1+1)^2\quad\Rightarrow\quad a=-\dfrac34\] Убеждаемся, что при этом значении параметра вторая точка пересечения параболы \(y=-\frac34(x+1)^2\) с прямой \(h=-2x-1\) – это точка с координатами \(\left(-\frac13; -\frac13\right)\) .
Таким образом, получили еще одно значение параметра.

Так как мы рассмотрели все возможные случаи для \(a\) , то итоговый ответ: \

Ответ:

\(\left\{-\frac34; \frac43\right\}\)

Задание 3 #4013

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых система уравнений \[\begin{cases} 2x^2+2y^2=5xy\\ (x-a)^2+(y-a)^2=5a^4 \end{cases}\]

имеет ровно два решения.

1) Рассмотрим первое уравнение системы как квадратное относительно \(x\) : \ Дискриминант равен \(D=9y^2\) , следовательно, \ Тогда уравнение можно переписать в виде \[(x-2y)\cdot (2x-y)=0\] Следовательно, всю систему можно переписать в виде \[\begin{cases} \left[\begin{gathered}\begin{aligned} &y=2x\\ &y=0,5x\end{aligned}\end{gathered}\right.\\ (x-a)^2+(y-a)^2=5a^4\end{cases}\] Совокупность задает две прямые, второе уравнение системы задает окружность с центром в \((a;a)\) и радиусом \(R=\sqrt5a^2\) . Чтобы исходное уравнение имело два решения, нужно, чтобы окружность пересекала график совокупности ровно в двух точках. Вот чертеж, когда, например, \(a=1\) :


Заметим, что так как координаты центра окружности равны, то центр окружности “бегает” по прямой \(y=x\) .

2) Так как у прямой \(y=kx\) тангенс угла наклона этой прямой к положительному направлению оси \(Ox\) равен \(k\) , то тангенс угла наклона прямой \(y=0,5x\) равен \(0,5\) (назовем его \(\mathrm{tg}\,\alpha\) ), прямой \(y=2x\) – равен \(2\) (назовем его \(\mathrm{tg}\,\beta\) ). Заметим, что \(\mathrm{tg}\,\alpha\cdot \mathrm{tg}\,\beta=1\) , следовательно, \(\mathrm{tg}\,\alpha=\mathrm{ctg}\,\beta=\mathrm{tg}\,(90^\circ-\beta)\) . Следовательно, \(\alpha=90^\circ-\beta\) , откуда \(\alpha+\beta=90^\circ\) . Это значит, что угол между \(y=2x\) и положительным направлением \(Oy\) равен углу между \(y=0,5x\) и положительным направлением \(Ox\) :


А так как прямая \(y=x\) является биссектрисой I координатного угла (то есть углы между ней и положительными направлениями \(Ox\) и \(Oy\) равны по \(45^\circ\) ), то углы между \(y=x\) и прямыми \(y=2x\) и \(y=0,5x\) равны.
Все это нам нужно было для того, чтобы сказать, что прямые \(y=2x\) и \(y=0,5x\) симметричны друг другу относительно \(y=x\) , следовательно, если окружность касается одной из них, то она обязательно касается и второй прямой.
Заметим, что если \(a=0\) , то окружность вырождается в точку \((0;0)\) и имеет лишь одну точку пересечения с обеими прямыми. То есть этот случай нам не подходит.
Таким образом, для того, чтобы окружность имела 2 точки пересечения с прямыми, нужно, чтобы она касалась этих прямых:


Видим, что случай, когда окружность располагается в третьей четверти, симметричен (относительно начала координат) случаю, когда она располагается в первой четверти. То есть в первой четверти \(a>0\) , а в третьей \(a<0\) (но такие же по модулю).
Поэтому рассмотрим только первую четверть.


Заметим, что \(OQ=\sqrt{(a-0)^2+(a-0)^2}=\sqrt2a\) , \(QK=R=\sqrt5a^2\) . Тогда \ Тогда \[\mathrm{tg}\,\angle QOK=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}}\] Но, с другой стороны, \[\mathrm{tg}\,\angle QOK=\mathrm{tg}\,(45^\circ-\alpha)=\dfrac{\mathrm{tg}\, 45^\circ-\mathrm{tg}\,\alpha}{1+\mathrm{tg}\,45^\circ\cdot \mathrm{tg}\,\alpha}\] следовательно, \[\dfrac{1-0,5}{1+1\cdot 0,5}=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}} \quad\Leftrightarrow\quad a=\pm \dfrac15\] Таким образом, мы уже сразу получили и положительное, и отрицательное значение для \(a\) . Следовательно, ответ: \

Ответ:

\(\{-0,2;0,2\}\)

Задание 4 #3278

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , для каждого из которых уравнение \

имеет единственное решение.

(ЕГЭ 2017, официальный пробный 21.04.2017)

Сделаем замену \(t=5^x, t>0\) и перенесем все слагаемые в одну часть: \ Получили квадратное уравнение, корнями которого по теореме Виета являются \(t_1=a+6\) и \(t_2=5+3|a|\) . Для того, чтобы исходное уравнение имело один корень, достаточно, чтобы полученное уравнение с \(t\) тоже имело один (положительный!) корень.
Заметим сразу, что \(t_2\) при всех \(a\) будет положительным. Таким образом, получаем два случая:

1) \(t_1=t_2\) : \ &a=-\dfrac14 \end{aligned} \end{gathered} \right.\]

2) Так как \(t_2\) всегда положителен, то \(t_1\) должен быть \(\leqslant 0\) : \

Ответ:

\((-\infty;-6]\cup\left\{-\frac14;\frac12\right\}\)

Задание 5 #3252

Уровень задания: Равен ЕГЭ

\[\sqrt{x^2-a^2}=\sqrt{3x^2-(3a+1)x+a}\]

имеет ровно один корень на отрезке \(\) .

(ЕГЭ 2017, резервный день)

Уравнение можно переписать в виде: \[\sqrt{(x-a)(x+a)}=\sqrt{(3x-1)(x-a)}\] Таким образом, заметим, что \(x=a\) является корнем уравнения при любых \(a\) , так как уравнение принимает вид \(0=0\) . Для того, чтобы этот корень принадлежат отрезку \(\) , нужно, чтобы \(0\leqslant a\leqslant 1\) .
Второй корень уравнения находится из \(x+a=3x-1\) , то есть \(x=\frac{a+1}2\) . Для того, чтобы это число было корнем уравнения, нужно, чтобы оно удовлетворяло ОДЗ уравнения, то есть: \[\left(\dfrac{a+1}2-a\right)\cdot \left(\dfrac{a+1}2+a\right)\geqslant 0\quad\Rightarrow\quad -\dfrac13\leqslant a\leqslant 1\] Для того, чтобы этот корень принадлежал отрезку \(\) , нужно, чтобы \ Таким образом, чтобы корень \(x=\frac{a+1}2\) существовал и принадлежал отрезку \(\) , нужно, чтобы \(-\frac13\leqslant a\leqslant 1\) .
Заметим, что тогда при \(0\leqslant a\leqslant 1\) оба корня \(x=a\) и \(x=\frac{a+1}2\) принадлежат отрезку \(\) (то есть уравнение имеет два корня на этом отрезке), кроме случая, когда они совпадают: \ Таким образом, нам подходят \(a\in \left[-\frac13; 0\right)\) и \(a=1\) .

Ответ:

\(a\in \left[-\frac13;0\right)\cup\{1\}\)

Задание 6 #3238

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственный корень на отрезке \(.\)

(ЕГЭ 2017, резервный день)

Уравнение равносильно: \ ОДЗ уравнения: \[\begin{cases} x\geqslant 0\\ x-a\geqslant 0\\3a(1-x) \geqslant 0\end{cases}\] На ОДЗ уравнение перепишется в виде: \

1) Пусть \(a<0\) . Тогда ОДЗ уравнения: \(x\geqslant 1\) . Следовательно, для того, чтобы уравнение имело единственный корень на отрезке \(\) , этот корень должен быть равен \(1\) . Проверим: \ Не подходит под \(a<0\) . Следовательно, эти значения \(a\) не подходят.

2) Пусть \(a=0\) . Тогда ОДЗ уравнения: \(x\geqslant 0\) . Уравнение перепишется в виде: \ Полученный корень подходит под ОДЗ и входит в отрезок \(\) . Следовательно, \(a=0\) – подходит.

3) Пусть \(a>0\) . Тогда ОДЗ: \(x\geqslant a\) и \(x\leqslant 1\) . Следовательно, если \(a>1\) , то ОДЗ – пустое множество. Таким образом, \(0 Рассмотрим функцию \(y=x^3-a(x^2-3x+3)\) . Исследуем ее.
Производная равна \(y"=3x^2-2ax+3a\) . Определим, какого знака может быть производная. Для этого найдем дискриминант уравнения \(3x^2-2ax+3a=0\) : \(D=4a(a-9)\) . Следовательно, при \(a\in (0;1]\) дискриминант \(D<0\) . Значит, выражение \(3x^2-2ax+3a\) положительно при всех \(x\) . Следовательно, при \(a\in (0;1]\) производная \(y">0\) . Следовательно, \(y\) возрастает. Таким образом, по свойству возрастающей функции уравнение \(y(x)=0\) может иметь не более одного корня.

Следовательно, для того, чтобы корень уравнения (точка пересечения графика \(y\) с осью абсцисс) находился на отрезке \(\) , нужно, чтобы \[\begin{cases} y(1)\geqslant 0\\ y(a)\leqslant 0 \end{cases}\quad\Rightarrow\quad a\in \] Учитывая, что изначально в рассматриваемом случае \(a\in (0;1]\) , то ответ \(a\in (0;1]\) . Заметим, что корень \(x_1\) удовлетворяет \((1)\) , корни \(x_2\) и \(x_3\) удовлетворяют \((2)\) . Также заметим, что корень \(x_1\) принадлежит отрезку \(\) .
Рассмотрим три случая:

1) \(a>0\) . Тогда \(x_2>3\) , \(x_3<3\) , следовательно, \(x_2\notin .\) Тогда уравнение будет иметь один корень на \(\) в одном из двух случаях:
- \(x_1\) удовлетворяет \((2)\) , \(x_3\) не удовлетворяет \((1)\) , или совпадает с \(x_1\) , или удовлетворяет \((1)\) , но не входит в отрезок \(\) (то есть меньше \(0\) );
- \(x_1\) не удовлетворяет \((2)\) , \(x_3\) удовлетворяет \((1)\) и не равен \(x_1\) .
Заметим, что \(x_3\) не может быть одновременно меньше нуля и удовлетворять \((1)\) (то есть быть больше \(\frac35\) ). Учитывая это замечание, случаи записываются в следующую совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3-a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3-a> Решая данную совокупность и учитывая, что \(a>0\) , получим: \

2) \(a=0\) . Тогда \(x_2=x_3=3\in .\) Заметим, что в этом случае \(x_1\) удовлетворяет \((2)\) и \(x_2=3\) удовлетворяет \((1)\) , то есть уравнение имеет два корня на \(\) . Это значение \(a\) нам не подходит.

3) \(a<0\) . Тогда \(x_2<3\) , \(x_3>3\) и \(x_3\notin \) . Рассуждая аналогично пункту 1), нужно решить совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3+a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3+a> \dfrac35\end{cases} \end{aligned}\end{gathered}\right.\] Решая данную совокупность и учитывая, что \(a<0\) , получим: \\]

Ответ:

\(\left(-\frac{13}5;-\frac{12}5\right] \cup\left[\frac{12}5;\frac{13}5\right)\)

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Похожие публикации