Какие выводы относительно электромагнитных волн. Электромагнитные волны понятие электромагнитных волн образование. Электромагнитная волна является поперечной

Электромагнитное поле - это порождающие друг друга переменные электрические и магнитные поля.
Теория электромагнитного поля создана Джеймсом Максвеллом в 1865 г.

Он теоретически доказал, что:
любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле.
Если электрические заряды движутся с ускорением, то создаваемое ими электрическое поле периодически меняется и само создает в пространстве переменное магнитное поле и т.д.

Источниками электромагнитного поля могут быть:
- движущийся магнит;
- электрический заряд, движущийся с ускорением или колеблющийся (в отличие от заряда движущегося с постоянной скоростью, например, в случае постоянного тока в проводнике, здесь создается постоянное магнитное поле).

Электрическое поле существует всегда вокруг электрического заряда, в любой системе отсчета, магнитное – в той, относительно которой электрические заряды движутся.
Электромагнитное поле существует в системе отсчета, относительно которой электрические заряды движутся с ускорением.

ПОПРОБУЙ РЕШИ

Кусок янтаря потёрли о ткань, и он зарядился статическим электричеством. Какое поле можно обнаружить вокруг неподвижного янтаря? Вокруг движущегося?

Заряженное тело покоится относительно поверхности земли. Автомобиль равномерно и прямолинейно движется относительно поверхности земли. Можно ли обнаружить постоянное магнитное поле в системе отсчета, связанной с автомобилем?

Какое поле возникает вокруг электрона, если он: покоится; движется с постоянной скоростью; движется с ускорением?

В кинескопе создаётся поток равномерно движущихся электронов. Можно ли обнаружить магнитное поле в системе отсчёта, связанной с одним из движущихся электронов?

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Электромагнитные волы - это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды

Свойства электромагнитных волн:
-распространяются не только в веществе, но и в вакууме;
- распространяются в вакууме со скоростью света (С = 300 000 км/c);
- это поперечные волны;
- это бегущие волны (переносят энергию).

Источником электромагнитных волн являются ускоренно движущиеся электрические заряды.
Колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.


ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Все окружающее нас пространство пронизано электромагнитным излучением. Солнце, окружающие нас тела, антенны передатчиков испускают электромагнитные волны, которые в зависимости от их частоты колебаний носят разные названия.


Радиоволны-это электромагнитные волны (c длиной волны от более чем 10000м до 0,005м), служащие для передачи сигналов (информации) на расстояние без проводов.
В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.
Радиоволны различной длины распространяются по-разному.

Электромагнитные излучения с длиной волны, меньшей чем 0,005м, но большей чем 770 нм, т. е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением (ИК).
Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

К видимому свету относят излучения с длинной волны примерно от 770нм до 380нм, от красного до фиолетового света. Значения этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием для развития зеленых растений и, следовательно, необходимым условием для существования жизни Земле.

Невидимое глазом электромагнитное излучение с длиннной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением (УФ).. Ультрафиолетовые излучение способно убивать белезнетворных бактерий, поэтому его широко применяют а медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару. В качестве источников ультрафиолетового излучения в медицине используются оразрядные лампы. Трубки таких ламп изготовляют из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи (Ри) невидимы азом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку. Способность рентгеновских лучей проникать через толстые слои веществ используется для диагностики заболеваний внутренних органов человека.

Связь между электричеством и магнетизмом не исчерпывается похожестью ряда соотношений. В сущности, оба эти поля суть разные проявления единого электромагнитного поля . В курсе механики мы говорили о принципе относительности, о том, что все законы природы должны быть инвариантными при переходе из одной инерциальной системы отсчета в другую. Однако электрическое и магнитное поля сами по себе, по отдельности, явно не удовлетворяют этому принципу. Действительно, находясь в инерциальной системе отсчета К , возьмем заряд q , движущийся прямолинейно и равномерно со скоростью v . Он создает кулоновское электрическое поле и, помимо этого, магнитное поле, вектор индукции которого дается выражением (6.2). Свяжем с зарядом систему отсчета К ", которая также будет инерциальной. В этой системе отсчета заряд покоится, и создаваемое им поле будет чисто электростатическим. Выходит, электрическое и магнитное поля не имеют абсолютного характера. При переходе к другой системе отсчета они должны преобразовываться друг через друга (рис. 6.33).

Рис. 6.33. Заряд покоится в движущейся системе отсчета

Вспомним преобразования Лоренца для пространственных координат и времени

Не забудем, что аналогичные преобразования связывают импульс и энергию частицы в разных системах отсчета

Станем ли мы теперь удивляться, что электрическое и магнитное поля в разных системах отсчета также связаны преобразованиями Лоренца

Напомним, что величины со штрихом относятся к системе отсчета К ", которая движется относительно системы К вдоль оси х со скоростью V .

Из преобразований Лоренца следует, что электрическое поле движущегося заряда вытягивается в направлении перпендикулярном скорости (рис. 6.34).

Рис. 6.34. Электрическое поле движущегося заряда

Заметим, что формулы преобразований Лоренца для электромагнитного поля отличаются от преобразований для пространства-времени или энергии-импульса тем, что не преобразуются компоненты полей вдоль линии движения системы отсчета К " (то есть вдоль оси ). Чтобы проиллюстрировать это, рассмотрим лабораторную систему отсчета К , в которой имеется электрическое поле Е , но нет магнитного (В = 0). В каком случае наблюдатель движущейся системы отсчета К " тоже будет наблюдать лишь чисто электрическое поле Е " без примеси магнитного (В " = 0)? Ответ следует из формул (6.38) при подстановке туда нулевых значений для В , В ": из второго уравнения сразу вытекает Е " y = Е " z = 0, а из первого - Е у = E z = 0. Иными словами, такое возможно, когда электрическое поле (не обязательно однородное) направлено вдоль движения системы отсчета К ".

Уравнения электромагнетизма изначально были инвариантны относительно этих преобразований, так что теория относительности вполне безболезненно совместилась с электромагнитной теорией, в то время как классическая механика подверглась существенной ревизии. Вместо обоснования справедливости преобразований (6.38), что выходит за рамки нашего курса, мы познакомимся еще с одним их следствием.

Поскольку мы пока занимаемся в основном нерелятивистской физикой, упростим преобразования Лоренца для случая, когда скорость системы отсчета К " много меньше скорости света: V << с . В этом случае, как уже отмечалось, квадратные корни

и преобразования (6.38) принимают вид

Эти уравнения можно записать в векторной форме

Вернемся к нашей заряженной частице, покоящейся в системе К ". В этой системе магнитное поле отсутствует (В " = 0), а электрическое поле дается законом Кулона

Поскольку предполагается V << с , мы используем преобразования Галилея для пространственных координат и временных интервалов, так что радиус-вектор, проведенный от частицы в точку наблюдения, одинаков в обеих системах отсчета: r = r ". Подставляя указанные выражения для В ", Е " в преобразования (6.40), получаем

Здесь мы использовали соотношение (6.3)

Первое уравнение (6.41) - обычное кулоновское поле заряда q , второе - магнитное поле движущегося заряда (6.2). Таким образом, даже классический магнетизм - это проявление релятивистских эффектов. Электрическое и магнитное поля оказываются неразрывно связанными друг с другом в единое электромагнитное поле, конкретное проявление которого зависит от системы отсчета.

Пример. Самолет летит горизонтально со скоростью 250 м/с в магнитном поле Земли с магнитной индукцией 50 мкТл, направленной вертикально вниз. Какое электромагнитное поле будут наблюдать пассажиры самолета?

Решение. Направим ось системы лабораторной отсчета К , связанной с Землей, вдоль маршрута самолета, так что его скорость запишется в виде

Ось 0z направим вертикально вверх, так что магнитная индукция описывается вектором

Нам надо найти электрическое и магнитное поля в движущейся системе отсчета К ", связанной с самолетом. Поскольку скорость самолета много меньше скорости света, мы можем применить формулы (6.40). Для удобства, однако, мы используем обратные формулы, получаемые заменой штрихованных величин на нештрихованные и изменением знака скорости: V = –v :

Так как в лабораторной системе электрического поля нет (Е = 0), то из второго уравнения сразу следует, что В " = В : магнитное поле для авиапассажиров останется тем же, что и для проводивших их в полет родственников. Однако, в самолете появится еще и электрическое поле. Его напряженность, как вытекает из первого уравнения, равна

Мы использовали здесь тот факт, что векторное произведение двух ортов дает третий орт

60 м на их концах создается разность потенциалов - величина небольшая, но доступная измерениям.

Дополнительная информация

http://www.galileogalilei.ru/ - Галилео Галилей (1564–1642). Биография. Сочинения. Размышления. Философия. Преобразования Галилея;

Из созданной Максвеллом теории можно сделать вывод о том, что быстропеременное электромагнитное поле должно распространяться в пространстве в виде поперечных волн. Причём эти волны могут существовать не только в веществе, но и в вакууме. Опираясь исключительно на теоретические выводы, Максвелл определил также, что электромагнитные волны должны распространяться в вакууме со скоростью 300 000 км/с, т. е. со скоростью света (скорость света, как известно, была измерена задолго до этого).

Вы уже знаете, что в механических волнах, например в звуковых, энергия передаётся от одних частиц среды к другим. При этом частицы приходят в колебательное движение, т. е. их смещение от положения равновесия периодически меняется. Для передачи звука обязательно нужна вещественная среда.

В связи с тем, что электромагнитные волны распространяются в веществе и в вакууме, возникает вопрос: что совершает колебания в электромагнитной волне, т. е. какие физические величины периодически меняются в ней?

  • Электромагнитная волна представляет собой систему порождающих друг друга и распространяющихся в пространстве переменных электрического и магнитного полей

Напомним, что количественной характеристикой магнитного поля является вектор магнитной индукции В.

Основной количественной характеристикой электрического поля служит векторная величина, называемая напряжённостью электрического поля, которая обозначается символом Е. Напряжённость Е электрического поля в какой-либо его точке равна отношению силы F, с которой поле действует на точечный положительный заряд, помещённый в эту точку, к значению этого заряда q.

Когда говорят, что магнитное и электрическое поля меняются, то это означает, что меняются соответственно вектор индукции магнитного поля В и вектор напряжённости электрического поля Е.

В электромагнитной волне именно векторы В и Е периодически меняются по модулю и по направлению, т. е. колеблются.

Рис. 135. Модель электромагнитной волны: Е - напряжённость электрического поля, В - индукция магнитного поля; с - скорость волны

На рисунке 135 изображены вектор напряжённости электрического поля Е и вектор индукции магнитного поля В электромагнитной волны в один и тот же момент времени. Это как бы «моментальный снимок» волны, распространяющейся в направлении оси Z. Плоскость, проведённая через векторы В и Е в любой точке, перпендикулярна направлению распространения волны, что говорит о поперечности волны.

За время, равное периоду колебаний, волна переместится вдоль оси Z на расстояние, равное длине волны. Для электромагнитных волн справедливы те же соотношения между длиной волны λ, её скоростью с, периодом Т и частотой v колебаний, что и для механических волн:

Максвелл не только научно обосновал возможность существования электромагнитных волн, но и указал, что для создания интенсивной электромагнитной волны, которую можно было бы зарегистрировать приборами на некотором расстоянии от источника, необходимо, чтобы колебания векторов Е и В происходили с достаточно высокой частотой (порядка 100 000 колебаний в секунду и больше).

Генрих Герц (1857-1894)
Немецкий физик, один из основоположников электродинамики. Экспериментально доказал существование электромагнитных волн

В 1888 г. немецкому учёному Генриху Герцу удалось получить и зарегистрировать электромагнитные волны. В результате опытов Герца были также обнаружены все свойства электромагнитных волн, теоретически предсказанные Максвеллом.

Всё окружающее нас пространство буквально пронизано электромагнитными волнами различных частот. В настоящее время все электромагнитные волны разделены по длинам волн (и соответственно по частотам) на шесть основных диапазонов, которые представлены на рисунке 136.

Рис. 136. Шкала электромагнитных волн

Границы диапазонов весьма условны, поэтому, как видно из рисунка, в большинстве случаев соседние диапазоны несколько перекрывают друг друга.

Электромагнитные волны разных частот отличаются друг от друга проникающей способностью, скоростью распространения в веществе, видимостью, цветностью и некоторыми другими свойствами.

Они могут оказывать как положительное, так и отрицательное воздействие на живые организмы. Например, инфракрасное, т. е. тепловое, излучение играет определяющую роль в поддержании жизни на Земле, поскольку люди, животные и растения могут существовать и нормально функционировать только при определённых температурах.

Видимый свет даёт нам информацию об окружающем мире и возможность ориентироваться в пространстве. Он необходим также для протекания процесса фотосинтеза в растениях, в результате чего выделяется кислород, необходимый для дыхания живых организмов.

Влияние на человека ультрафиолетового излучения (вызывающего загар) в большой степени определяется интенсивностью и продолжительностью облучения. В допустимых дозах оно повышает сопротивляемость организма человека к различным заболеваниям, в частности инфекционным. Превышение допустимой дозы может вызвать ожоги кожи, развитие онкологических заболеваний, ослабление иммунитета, повреждение сетчатки глаз. Глаза можно защитить с помощью стеклянных очков (как тёмных, так и прозрачных, но не пластиковых), так как стекло поглощает значительную часть ультрафиолетовых лучей.

Вы знакомы и с рентгеновским излучением, в частности с его широким применением в медицине - флюорографическое обследование или рентгеновский снимок наверняка делали каждому из вас. Но слишком большие дозы или частые обследования с помощью рентгеновских лучей могут вызвать серьёзные заболевания.

Получение электромагнитных волн имеет огромное научное и практическое значение. В этом можно убедиться на примере всего лишь одного диапазона - радиоволн, применяемых для телевизионной и радиосвязи, в радиолокации (т. е. для обнаружения объектов и измерения расстояния до них), в радиоастрономии и других сферах деятельности.

Вопросы

  1. Какие выводы относительно электромагнитных волн можно сделать из теории Максвелла?
  2. Какие физические величины периодически меняются в электромагнитной волне?
  3. Какие соотношения между длиной волны, её скоростью, периодом и частотой колебаний справедливы для электромагнитных волн?
  4. При каком условии волна будет достаточно интенсивной для того, чтобы её можно было зарегистрировать?
  5. Когда и кем были впервые получены электромагнитные волны?
  6. Приведите примеры применения разных диапазонов электромагнитных волн и их воздействия на живые организмы.

Упражнение

  1. На какой частоте суда передают сигнал бедствия SOS, если по международному соглашению длина радиоволны должна быть 600 м?
  2. Радиосигнал, посланный с Земли на Луну, может отразиться от поверхности Луны и вернуться на Землю. Предложите способ измерения расстояния между Землёй и Луной с помощью радиосигнала.

    Указание: задача решается таким же методом, каким измеряется глубина моря с помощью эхолокации (см. § 30).

  3. Можно ли измерить расстояние между Землёй и Луной с помощью звуковой или ультразвуковой волны? Ответ обоснуйте.

«Электромагнитные волны и их свойства» - Короткие волны. Электромагнитные волны. Радиоволны. Производит химическое действие на фотопластинки. В 1901 году Рентген первым из физиков получил Нобелевскую премию. Понятие упругого эфира привело к неразрешимым противоречиям. Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью.

«Физика электромагнитные волны» - Майкл Фарадей. 1. Что такое электромагнитное поле? =. Урок по физике в 11 классе учитель - Хатеновская Е.В. МОУ СОШ № 2 с.Красное. Так возникает электромагнитное поле. . Переменное магнитное поле создает переменное электрическое поле и наоборот. Максвелл выразил законы электромагнитного поля в виде системы 4 дифференциальных уравнений.

«Трансформатор» - На уроке применяются цифровые образовательные ресурсы из http://school-collection.edu.ru. От чего и как зависит ЭДС индукции в катушке из проводника. 9. 5. Какой прибор нужно подключить между источником переменного тока и лампочкой? Можно ли повышающий трансформатор сделать понижающим? II. 13. Запиши важное В трансформаторе применяется явление электромагнитной индукции.

«Электромагнитные волны» - Окончил Берлинский университет (1880 г.) и был ассистентом у Г. Гельмгольца. 4.3 Экспериментальное исследование ЭМВ. Если оптическая разность хода. Интерференционным членом. 4.1 Генерация ЭМВ. Где. Дополнил известный принцип. Главный максимум, соответствующий. Рисунок 7.7.

«Электромагнитное поле» - Свойства электромагнитных волн: Скорость электромагнитных волн в вакууме обозначается латинской буквой с: с? 300 000 км/с. Что такое электромагнитная волна? Существование электромагнитных волн было предсказано Дж. Возникнет возмущение электромагнитного поля. 9 класс Учитель физики МОУ «СОШ с. Рефлектор» Леснова Н.П.

«Волны электромагнитные» - Радиоволны. Радиоволны Инфракрасное Ультрафиолетовое Рентгеновское?-излучение. Как ориентированы векторы Е и В по отношению друг к другу в электромагнитной волне? Получаются с помощью колебательных контуров и макроскопических вибраторов. Рентгеновские лучи. Часть электромагнитного излучения, воспринимаемая глазом.

Всего в теме 14 презентаций

Похожие публикации