Делить на 0 нельзя. Почему нельзя делить на ноль? Парадоксы и бессмысленность деления на ноль

«Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности, это просто сокращенная форма записи уравнения 4 x = 8.

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает, и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 0 = 0. Выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 1 = 0. Правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас, в первую очередь, будут учить именно этому.

Добровольный читательский взнос на поддержание проекта

Евгений ШИРЯЕВ, преподаватель и руководитель Лаборатории математики Политехнического музея , рассказал "АиФ" о делении на ноль:

1. Юрисдикция вопроса

Согласитесь, особенную провокационность правилу придает запрет. Как это нельзя? Кто запретил? А как же наши гражданские права?

Ни конституция, ни Уголовный кодекс, ни даже устав вашей школы не возражают против интересующего нас интеллектуального действия. А значит, запрет не имеет юридической силы, и ничто не мешает прямо тут, на страницах "АиФ", попробовать что-нибудь разделить на ноль. Например, тысячу.

2. Разделим, как учили

Вспомните, когда вы только узнали, как делить, первые примеры решали с проверкой умножением: результат, умноженный на делитель, должен был совпасть с делимым. Не совпал - не решили.

Пример 1. 1000: 0 =...

Забудем на минуту про запретное правило и сделаем несколько попыток угадать ответ.

Неправильные отсечёт проверка. Перебирайте варианты: 100, 1, −23, 17, 0, 10 000. Для каждого из них проверка даст один и тот же результат:

100 · 0 = 1 · 0 = − 23 · 0 = 17 · 0 = 0 · 0 = 10 000 · 0 = 0

Ноль умножением все превращает в себя и никогда - в тысячу. Вывод сформулировать несложно: никакое число не пройдет проверку. Т. е. ни одно число не может быть результатом деления ненулевого числа на ноль. Такое деление не запрещено, а просто не имеет результата.

3. Нюанс

Чуть не упустили одну возможность опровергнуть запрет. Да, мы признаем, что ненулевое число не разделится на 0. Но может быть, сам 0 сможет?

Пример 2. 0: 0 = ...

Ваши предложения для частного? 100? Пожалуйста: частное 100, умноженное на делитель 0, равно делимому 0.

Еще варианты! 1? Тоже подходит. И −23, и 17, и все-все-все. В этом примере проверка на результат будет положительной для любого числа. И, по-честному, решением в этом примере надо называть не число, а множество чисел. Всех. А так недолго договориться и до того, что Алиса - это не Алиса, а Мэри-Энн, а обе они - сон кролика.

4. Что там про высшую математику?

Проблема разрешена, нюансы учтены, точки расставлены, все прояснилось - ответом для примера с делением на ноль не может быть ни одно число. Такие задачки решать - дело безнадежное и невозможное. А значит... интересное! Дубль два.

Пример 3. Придумать, как разделить 1000 на 0.

А никак. Зато 1000 можно без трудностей делить на другие числа. Ну, давайте хотя бы делать то, что получается, пусть даже изменив поставленную задачу. А там, глядишь, увлечемся, и ответ сам собой объявится. Забываем на минуту про ноль и делим на сто:

Сотня далека от нуля. Сделаем шаг к нему, уменьшив делитель:

1000: 25 = 40,
1000: 20 = 50,
1000: 10 = 100,
1000: 8 = 125,
1000: 5 = 200,
1000: 4 = 250,
1000: 2 = 500,
1000: 1 = 1000.

Очевидная динамика: чем ближе делитель к нулю, тем больше частное. Тенденцию можно наблюдать и дальше, переходя к дробям и продолжая уменьшать числитель:

Осталось заметить, что к нулю мы можем подойти как угодно близко, делая частное сколь угодно большим.

В этом процессе нет нуля и нет последнего частного. Мы обозначили движение к ним, заменив число на последовательность, сходящуюся к интересующему нас числу:

При этом подразумевается аналогичная замена и для делимого:

1000 ↔ { 1000, 1000, 1000,... }

Стрелки не зря поставлены двусторонними: некоторые последовательности могут сходиться к числам. Тогда мы можем поставить в соответствие последовательности ее числовой предел.

Посмотрим на последовательность частных:

Она растет неограниченно, не стремясь ни к какому числу и превосходя любое. Математики добавляют к числам символ ∞, чтобы иметь возможность рядом с такой последовательностью поставить двустороннюю стрелку:

Сопоставление числам последовательностей, имеющих предел, позволяет предложить решение к третьему примеру:

При поэлементном делении последовательности, сходящейся к 1000, на последовательность из положительных чисел, сходящуюся к 0, получим последовательность, сходящуюся к ∞.

5. И здесь нюанс с двумя нулями

Что будет результатом деления двух последовательностей положительных чисел, сходящихся к нулю? Если они одинаковые, то тождественная единица. Если к нулю быстрее сходится последовательность-делимое, то в частном - последовательность с нулевым пределом. А когда элементы делителя убывают гораздо быстрее, чем у делимого, последовательность частного будет сильно расти:

Неопределенная ситуация. И так и называется: неопределенность вида 0/0 . Когда математики видят последовательности, подходящие под такую неопределенность, они не бросаются делить два одинаковых числа друг на друга, а разбираются, какая из последовательностей быстрее бежит к нулю и как именно. И в каждом примере будет свой конкретный ответ!

6. В жизни

Закон Ома связывает силу тока, напряжение и сопротивление в цепи. Часто его записывают в такой форме:

Позволим себе пренебречь аккуратным физическим пониманием и формально посмотрим на правую часть как на частное двух чисел. Вообразим, что решаем школьную задачу по электричеству. В условии дано напряжение в вольтах и сопротивление в омах. Вопрос очевиден, решение в одно действие.

А теперь заглянем в определение сверхпроводимости: это свойство некоторых металлов обладать нулевым электрическим сопротивлением.

Ну что, решим задачку для сверхпроводящей цепи? Просто так подставить R = 0 не выйдет, физика подкидывает интересную задачу, за которой, очевидно, стоит научное открытие. И люди, сумевшие поделить на ноль в этой ситуации, получили Нобелевскую премию. Любые запреты полезно уметь обходить!

В курсе школьной арифметики все математические операции проводятся с вещественными числами. Множество этих чисел (или непрерывное упорядоченное поле) имеет ряд свойств (аксиом): коммутативность и ассоциативность умножения и сложения, существование нуля, единицы, противоположного и обратного элементов. Также аксиомы порядка и непрерывности, применяемые для сравнительного анализа, позволяют определить все свойства вещественных чисел.

Поскольку деление является операцией, обратной умножению, при делении на ноль вещественных чисел неизбежно возникновение двух неразрешимых проблем. Во-первых, проверка результата деления на ноль при помощи умножения не имеет числового выражения. Каким бы числом не было частное, если его умножить на ноль, делимое получить невозможно. Во-вторых, в примере 0:0 ответом может служить абсолютно любое число, которое при перемножении с делителем всегда обращается в ноль.

Деление на ноль в высшей математике

Перечисленные трудности деления на ноль привели к наложению табу на эту операцию, по крайней мере, в рамках школьного курса. Однако в высшей математике находят возможности обойти этот запрет.

Например, за счет построения другой алгебраической структуры, отличной от знакомой всем числовой прямой. Примером такой структуры является колесо. Здесь существуют свои законы и правила. В частности, деление не привязано к умножению и превращается из бинарной операции (с двумя аргументами) в унарную (с одним аргументом), обозначается символом /х.

Расширение поля вещественных чисел происходит за счет введения гиперреальных чисел, которое охватывает бесконечно большие и бесконечно малые величины. Такой подход позволяет рассматривать термин «бесконечность» как некое число. Причем это число при расширении числовой прямой теряет свой знак, превращаясь в идеализированную точку, соединяющую два конца этой прямой. Такой подход можно сравнить с линией смены дат, когда при переходе между двумя часовыми поясами UTC+12 и UTC-12 можно оказаться в следующем дне или же в предыдущем. При этом становится верным утверждение х/0=∞ для любых х≠0.

Чтобы устранить неопределенность 0/0, для колеса вводится новый элемент ⏊=0/0. При этом в данной алгебраической структуре есть свои нюансы: 0·х≠0; х-х≠0 в общем случае. Также х·/х≠1, поскольку деление и умножение больше не считаются обратными операциями. Но данные особенности колеса хорошо объясняются с помощью тождеств дистрибутивного закона, действующего в такой алгебраической структуре несколько иначе. Более подробные разъяснения можно найти в специализированной литературе.

Алгебра, к которой все привыкли, является, по сути, частным случаем более сложных систем, например, того же колеса. Как видим, делить на ноль в высшей математике можно. Для этого требуется выйти за границы привычных представлений о числах, алгебраических операциях и законах, которым они подчиняются. Хотя это вполне естественный процесс, сопровождающий любой поиск новых знаний.

  • Tutorial

Моя трёхлетняя дочка София в последнее время частенько упоминает «ноль», например, в таком контексте:

- Соня, вот ты вроде сначала не послушалась, а затем послушалась, что же получается?..
- Ну… ноль!

Т.е. ощущение отрицательных чисел и нейтральности нуля уже имеет, о как. Скоро поинтересуется: почему же это на ноль делить нельзя?
И вот решил я простыми словами записать всё, что я ещё помню про деление на ноль и всё такое.

Деление вообще лучше один раз увидеть, чем сто раз услышать.
Ну, или один разделить на икс раз увидеть…

Тут сразу видно, что ноль - это центр жизни, вселенной и всего такого. Ответом на главный вопрос про всё это пусть себе будет 42, а вот центр - по-любому 0. У него даже знака нет, ни плюс (послушалась), ни минус (не послушалась), он таки реально ноль. И в поросятах знает толк.

Потому что если любого поросёнка умножить на ноль, то поросёнка засасывает в эту круглую чёрную дыру, и получается опять ноль. Не такой уж этот ноль и нейтральный, когда дело от сложения-вычитания доходит до умножения, не говоря уже про деление… Там если ноль сверху «0/x» - то опять чёрная дыра. Всё поедает в ноль. А вот если при делении, да ещё и снизу - «x/0», то начинается… следуй за белым кроликом, Соня!

В школе тебе скажут «на ноль делить нельзя» и не покраснеют. В доказательство тыкнут на калькуляторе «1/0=» и обычный калькулятор, тоже не покраснев, напишет «E», «Error», мол, «нельзя - значит нельзя». Хотя что там у тебя будет считаться обычным калькулятором - ещё вопрос. Мне вот сейчас, в 2014-ом, стандартный калькулятор на телефоне-андроиде пишет совсем другое:

Ничего себе бесконечность. Скользи себе взглядом, круги нарезай. Вот тебе и нельзя. Оказывается можно. Если осторожно. Потому что не осторожно мой Android пока тоже не согласен: «0/0=Error», опять нельзя. Попробуем ещё разок: «-1/0 = -∞», о как. Интересное мнение, но я с ним не согласен. Как не согласен и с «0/0=Error».

Кстати, JavaScript, который питает нынешние сайты, тоже не согласен с калькулятором андроида: зайди в консоль браузера (ещё F12?) и напиши там: «0/0» (ввод). JS тебе ответит: «NaN». Это не ошибка. Это «Not a Number» - т.е. какая-то штука такая, но не число. При том что «1/0» JS тоже понимает как «Infinity». Это уже ближе. Но пока только тепло…

В университете - высшая математика. Там пределы, полюса, и прочее шаманство. И всё усложняется, усложняется, ходят вокруг да около, но только бы не нарушать хрустальные законы математики. А вот если не пытаться вписать деление на ноль в эти существующие законы, то можно прочувствовать эту фантастику - на пальцах.

Для этого посмотрим-ка ещё раз на деление:

Следи за правой линией, справа налево. Чем ближе икс к нулю, тем сильнее взлетает вверх разделённое на икс. И где-то там в облаках «плюс бесконечность». Она всегда дальше, как горизонт, её не догонишь.

А теперь следи за левой линией, слева направо. Та же история, только теперь разделённое улетает вниз, бесконечно вниз, в «минус бесконечность». Отсюда и мнение, что «1/0= +∞», а «-1/0 = 1/-0 = -∞».

Но фокус в том, что «0 = -0», нету у нуля знака, если не усложнять с пределами. И вот если поделить единицу на такой «простой» ноль без знака, то не логично ли предположить, что получится и бесконечность - «просто» бесконечность, без знака, как ноль. Где она - сверху или снизу? Она везде - бесконечно далеко от нуля во всех направлениях. Это и есть ноль, вывернутый наизнанку. Ноль - нет ничего. Бесконечность - есть всё. И положительное, и отрицательное. Вообще всё. И сразу. Абсолют.

Но там что-то было про «0/0», что-то другое, не бесконечность… Сделаем такой трюк: «2*0=0», ага, скажет учительница в школе. Ещё: «3*0=0» - опять ага. И немного наплевав на «на ноль делить нельзя», мол, весь мир и так потихоньку делит, получим: «2=0/0» и «3=0/0». В каком там классе это проходят, только без нуля, конечно.

Минуточку, получается «2 = 0/0 = 3», «2=3»?! Вот поэтому и боятся, вот поэтому и «нельзя». Страшнее «1/0» только «0/0», его даже калькулятор андроида боится.

А мы не боимся! Потому что у нас есть сила математики воображения. Мы можем представить себя бесконечным Абсолютом где-то там в звёздах, посмотреть оттуда на грешный мир конечных чисел и людей и понять, что с этой точки зрения они все одинаковые. И «2» c «3», и даже «-1», и училка в школе, возможно, тоже.

Так вот, я скромно предполагаю, что 0/0 - это весь конечный мир, точнее всё, что и не бесконечно и не пустота.

Вот как выглядит ноль, делённый на икс, в моих фантазиях, далёких от официальной математики. На самом деле похоже на 1/х, только перегиб не в единице, а в нуле. Кстати, у 2/x перегиб в двойке, а у 0.5/x - в 0.5.

Получается, 0/x при x=0 принимает все конечные значения - не бесконечности, не пустоту. Там в графике дырочка в нуле, оси проглядывают.

Можно конечно возразить, что «0*0 = 0», а значит ноль (пустота) тоже попадает в категорию 0/0. Чуть забегу вперёд - там будут степени нуля и это возражение разлетится в осколки.

Упс, единичка-то в бесконечности тоже может быть тоже записана как 0/0, получится (0/0)/0 - бесконечность. Вот теперь порядок, всё можно выразить соотношением нулей.

Например, если к бесконечности прибавить конечное, то бесконечность поглотит конечное, останется бесконечностью:
1/0 + 0/0 = (1+0)/0 = 1/0.

А если бесконечность умножить на пустоту, то они поглощают друг друга, и получается конечный мир:
1/0 * 0 = (1*0)/0 = 0/0.

Но это только первый уровень сновидений. Можно копать глубже.

Если ты уже знаешь понятие «степень числа», и что «1/x = x^-1», то, подумав, сможешь перейти от всех этих делений и скобок (вроде (0/0)/0) просто к степеням:

1/0 = 0^-1
0/0 = 0^0
0 = 0^1

Подсказка.
Тут с бесконечностью и пустотой всё просто, как в школе. А конечный мир переходит к степеням вот так:
0/0
= (0*1)/0
= 0*(1/0)
= 0 * 1/0
= 0^1 * 0^-1
= 0^(1 + -1)
= 0^(1-1)
= 0^0.

Уфф!

Получается, что положительные степени нуля - это нули, отрицательные степени нуля - это бесконечности, а нулевая степень нуля - это конечный мир.

Такой вот получается универсальный объект «0^x». Такие объекты прекрасно между собой взаимодействуют, опять-таки многим законам подчиняются, красота, в общем.

Моих скромных познаний математики хватило, чтобы нарисовать из них абелеву группу, которая, будучи изолированной в вакууме («просто абстрактные объекты, такая форма записи, вроде экспоненты»), даже выдержала проверку крутейшим преподом по матану с вердиктом «интересно, но ничего не получится». Ещё бы тут что-нить получилось, это ж табуированная тема - деление на ноль. В общем, не грузись.

Попробуем лучше просто умножить бесконечность на конечное число:
0^-1 * 0^0 = 0^(-1 + 0) = 0^-1.

Опять же, бесконечность поглотила конечное число так же, как и её антипод ноль поглощает конечные числа, та же чёрная дыра:
0^1 * 0^0 = 0^(1 + 0) = 0^1.

А ещё оказывается что степени - это как сила. Т.е. ноль второй степени сильнее нуля обычного (первой степени, 0^1). И бесконечность минус второй степени сильнее бесконечности обычной (0^-1).

А когда пустота сталкивается с абсолютом, они меряются силой - у кого больше, тот и победит:
0^1 * 0^-2 = 0^(1 + -2) = 0^-1 = ∞.
0^2 * 0^-1 = 0^(2 + -1) = 0^1 = 0.

Если же они равны силами, то аннигилируются и остаётся конечный мир:
0^1 * 0^-1 = 0^(1 + -1) = 0^0.

Кстати, официальная математика уже рядом. Её представители знают про «полюса» и что у полюсов разная сила (порядок), а так же про «нуль порядка k». Но они всё топчутся на прочной поверхности «рядом с» и боятся прыгнуть в чёрную нору дыру.

И последний для меня - третий уровень сновидений. Вот, например, эти все 0^-1 и 0^-2 - бесконечности разной силы. Или 0^1, 0^2 - нули разной силы. Но ведь и «-1» и «-2» и «+1» и «+2» - это всё - 0/0, равное 0^0, уже проходили. Получается, что с этого уровня сновидений, уже всё равно вообще что это - нули, бесконечности, и даже конечный мир туда при некотором просветлении попадает. В одну точку. В одну категорию. Называется это счастье - Сингулярность.

Надо признать, что вне состояния просветления одной точки я не наблюдаю, но одну категорию - объединение «0^0 U 0^(0^0)» - вполне.

Какую из всего этого можно вынести пользу? Ведь даже чуть менее безумные «мнимые числа», что тоже рвут калькуляторы в Error = √-1, и те смогли стать официальной математикой и теперь упрощают расчёты сталеварения.

Как листья на дереве издалека кажутся одинаковыми, но если рассмотреть их внимательнее - они все разные. А если задуматься, то опять одинаковые. И мало чем отличаются от тебя или меня. Вернее, вообще ничем не отличаются, если крепко задуматься.

Польза тут в умении и фокусироваться на отличиях и абстрагироваться. Это очень полезно и в работе, и в жизни, и даже в отношении к смерти.

Вот такие путешествия в кроличью нору, Соня!

Строгий запрет на деление на ноль налагается ещё в младших классах школы. Дети обычно и не задумываются о его причинах, но на самом деле знать, почему что-нибудь запрещается, и интересно, и полезно.

Арифметические действия

Арифметические действия, которые изучаются в школе, неравноценны с точки зрения математиков. Они признают полноправными только две из этих операций - сложение и умножение. Они входят в само понятие числа, и все остальные действия с числами так или иначе строятся на этих двух. То есть невозможно не только деление на ноль, но и деление вообще.

Вычитание и деление

Чего же не хватает остальным действиям? Опять же, из школы известно, что, например, вычесть из семи четыре - значит, взять семь конфет, четыре из них съесть и посчитать те, что останутся. Но математики поеданием конфет и вообще воспринимают их совершенно иначе. Для них есть только сложение, то есть запись 7 - 4 означает число, которое в сумме с числом 4 будет равно 7. То есть для математиков 7 - 4 - это краткая запись уравнения: х + 4 = 7. Это не вычитание, а задача - найти такое число, которое нужно поставить вместо х.

То же самое относится к делению и умножению. Деля десять на два, младшеклассник раскладывает десять конфет на две одинаковые кучки. Математик же и здесь видит уравнение: 2 · х = 10.

Так и выясняется, почему запрещено деление на ноль: оно просто невозможно. Запись 6: 0 должна превращаться в уравнение 0 · х = 6. То есть требуется найти число, которое можно умножить на ноль и получить 6. Но известно, что умножение на ноль всегда даёт ноль. Это сущностное свойство ноля.

Таким образом, нет такого числа, которое, умножаясь на ноль, давало бы какое-то число, отличное от ноля. Значит, у этого уравнения нет решения, нет такого числа, которое соотносилось бы с записью 6: 0, то есть она не имеет смысла. О её бессмысленности и говорят, когда запрещают деление на ноль.

Делится ли ноль на ноль?

А можно ли ноль разделить на ноль? Уравнение 0 · х = 0 не вызывает затруднений, и можно взять за х этот самый ноль и получить 0 · 0 = 0. Тогда 0: 0 = 0? Но, если, например, принять за х единицу, тоже получится 0 · 1 = 0. Можно принять за х вообще какое угодно число и делить на ноль, и результат останется прежним: 0: 0 = 9, 0: 0 = 51 и так далее.

Таким образом, в это уравнение можно вставить совершенно любое число, и невозможно выбрать какое-то конкретное, невозможно определить, какое число обозначается записью 0: 0. То есть и эта запись тоже не имеет смысла, и деление на ноль всё равно невозможно: он не делится даже сам на себя.

Такова важная особенность операции деления, то есть умножения и связанного с ним числа ноль.

Остаётся вопрос: но вычитать его можно? Можно сказать, что настоящая математика начинается с этого интересного вопроса. Чтобы найти ответ на него, необходимо узнать формальные математические определения числовых множеств и познакомиться с операциями над ними. Например, существуют не только простые, но и делениекоторых отличается от деления обычных. Это не входит в школьную программу, но университетские лекции по математике начинаются именно с этого.

Похожие публикации